КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Символический язык логической структуры математических предложений
Математика описывает исследуемые процессы, используя кроме словесного языка символический. Каждое математическое предложение характеризуется содержанием и логической формой, причем они взаимосвязаны. При записи математических предложений используются обозначения логики:
a) Þ логический вывод (дедукция), который означает: «влечет за собой». b) Û логическая равносильность, которая означает: «эквивалентно».
a) $ квантор существования. «$x» означает: «существует по меньшей мере один х такой, что …». Запись: «$x:А(х)»; означает: «существует такое значение х, что А(х) – истинное высказывание». b) "– квантор общности, который означает «любой» или «для всех». Основным объектом математической логики является высказывание. Определение 13: Высказыванием в математике называют предложение, относительного которого имеет смысл вопрос истинности или ложности его. В логике считают, что из двух данных предложений можно образовать новые предложения, используя для этого слова: «и, или, если…, то», которые называют логическими связками. Предложения, образованные из других предложений с помощью логических связок, называют составными. Выделяют пять основных логических связок, которые позволяют получить новые высказывания: 1. Отрицание – это высказывание, которое получается из данного высказывания А с помощью слова «не». Отрицание обозначается`А. 2. Конъюнкция высказываний А и В – это высказывание АÙB, которое истинно, когда оба высказывания истинны, и высказывание АÙB ложно, когда хотя бы одно из этих высказываний ложно. Конъюнкция получается из двух данных высказываний А и В с помощью союза «и». Пример 14. Пусть высказывание А: «студент сдал экзамен по истории», высказывание В: «сдал экзамен по иностранному языку». Конъюнкция высказываний А и В (АÙB): «студент сдал экзамен по истории и сдал экзамен по иностранному языку». 3. Дизъюнкция высказываний А или В – это высказывание АÚB, которое истинно, когда истинно хотя бы одно из этих высказываний, и высказывание АÚB ложно, когда оба высказывания ложны. Дизъюнкция получается из двух данных высказываний А, В с помощью союза «или». Пример 15. Пусть высказывание А: «студент сдаёт экзамены на хорошо», высказывание В: «сдаёт экзамены на отлично». Дизъюнкция высказываний А или В (АÚB): «студент сдаёт экзамены на хорошо или сдаёт экзамены на отлично». 4. Импликация образуется из двух данных высказываний А и В с помощью слов «если…, то…». Импликация обозначается AÞB (если А, то В). Пример 16. Если студент сдаёт сессию без троек и двоек, то он получает стипендию. Здесь высказывания: А – «студент сдаёт сессию без троек и двоек», В – «он получает стипендию». 5. Эквиваленция образуется из двух данных высказываний А и В с помощью слов «тогда и только тогда, когда…». Эквиваленция обозначается: AÛB. Пример 17. «Студент получает стипендию тогда и только тогда, когда он сдаёт экзамены на хорошо или отлично». Здесь высказывания: А – «студент получает стипендию», В – «он сдаёт экзамены на хорошо или отлично». Для примера рассмотрим несколько высказываний с применением кванторов. Пример 18. Если В есть подмножество Х и элемент х принадлежит В, то это можно записать в виде: "x:xÎBÞxÎX. Эту строку можно прочитать так: для любого х, если х принадлежит подмножеству В, то это влечет за собой (следует) утверждение, что х принадлежит множеству Х. Пример19. Запись: "a:[aÎAÇB]Û[aÎAÇaÎB] можно прочитать: для любого элемента а, если а принадлежит пересечению множеств А и В, то это равносильно, что а принадлежит множеству А и множеству В. Пример 20. Запись: $x:xÎAÇB означает: существует по меньшей мере один х такой, что элемент x принадлежит пересечению множеств А и В. Пример 21. Запись «"z:[zÎZ]Þ$xÎX:x=cos(z)», можно прочитать: для любого элемента z, если z принадлежит множеству Z, то из этого следует, что существует по меньшей мере один х, принадлежащий множеству Х такой, что элемент x равен cos(z).
Дата добавления: 2014-12-27; Просмотров: 798; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |