КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Эмпирическая функция распределения
Понятие функции распределения было дано в разделе теории вероятности для случайной величины. Для выборки вводится понятие эмпирической функции распределения. Эмпирическая функция распределения (функция распределения выборки) это функция F*(x), которая определяет для каждого значения xi относительную частоту события X<x. Эмпирическая функция распределения имеет вид:
где: nx – число вариант меньших х, n – объём выборки. В отличие от эмпирической функции распределения для выборки, вводится понятие теоретической функции распределения для генеральной совокупности – F(x). Теоретическая функция распределения определяет вероятность события X<x. Эмпирическая функция распределения F*(x) по вероятности стремится к теоретической функции распределения F(x) при больших количествах испытаний и обладает всеми свойствами F(x):
Пример 3. Учитывая свойства 1, 2, 3, найдём эмпирическую функцию распределения для примера 1. Решение. Объём выборки n=15. Наименьшая варианта х1=2, тогда: F*(x)=0 при x ≤ x1. При значениях варианты в интервале 2<x≤3: F*(x)=5/15=0,33. При значениях варианты в интервале 3<x≤5: F*(x)=10/15=0,66. При 5<x≤10: F*(x)=13/15 = 0,87. При x>10: F*(x) =1. Эмпирическая функция распределения представлена в таблице 6.5. Таблица 6.5
На рис. 6.3 представлен график эмпирической функции распределения. Рис. 6.3. Эмпирическая функция распределения
Дата добавления: 2014-12-27; Просмотров: 528; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |