КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема лекции 10. Индекы
Конспект лекции: Статистическим индексом называют обобщающий относительный показатель сравнения двух совокупностей, состоящих из элементов, непос-редственно не поддающихся суммированию, например совокупность, где элементами выступают хлопок и станки. Наиболее распространена сравнительная характеристика совокупностей во времени. Здесь индексы выступают как временные показатели (показатели динамики). Индексный метод применяется также в статистике как аналитическое орудие - для оценки роли отдельных факторов в изменении сложного явления. Классификация индексов представлена на рис. 9. К индексам объемных показателей относятся индексы физического объема продукции, физического объема товарооборота, физического объема валового национального дохода и т. д. Индексы качественных показателей включают в себя индексы цен, себестоимости, производительности труда и др. Общие индексы характеризуют изменение совокупности в целом, например валовой продукции народного хозяйства в отчетном году по сравнению с предыдущим. Индивидуальные индексы дают сравнительную характеристику динамики отдельных элементов совокупности, например выпуска чугуна в двух периодах. Групповые индексы характеризуют динамику не всей совокупности, а только ее части, например индекс валовой продукции машиностроительной отрасли. Агрегатные и средние из индивидуальных индексов определяются методологией их расчета. Если база для сравнения всех уровней явления остается постоянной, получаемый индекс называют базисным, в противном случае — цепным. Индивидуальный индекс цен Чтобы получить характеристику изменения цен на какой-либо продукт, рассчитывают индекс: где - индивидуальный индекс цен; р1, р0— цена единицы продукта в отчетном и базисном периодах соответственно. Индивидуальный индекс физического объема продукции Чтобы получить характеристику изменения количества товара, рассчитывают индекс: где - индивидуальный иңдекс физического объема; количество товара в отчетном и базисном периодах соответственно. Индексный метод анализа факторов динамики явлений Индексный метод анализа факторов динамики явлений применяется в тех случаях, когда между результативным и факторными показателями существует функциональная связь. Первым этапом анализа является установление формы связи признаков, затем строится система взаимосвязанных индексов. Если результативный показатель представляется произведением факторов-сомножителей (у = х * z * w), то система взаимосвязанных индексов может быть построена двумя методами: во-первых, выявлением воздействия каждого фактора при условии, что все остальные не изменяются, т. е. находятся на базисном уровне: =[(x1z0w0)/(x0z0w0)]*[(x0z1w1)/(x0z0w1)]*[(x0z0w1)/(x0z0w0)] во-вторых, в виде последовательной цепи (цепной метод). =[(x1z1w1)/(x0z1w1)]*[(x0z1w1)/(x0z1w1)]*[(x0z0w1)/(x0z0w0)] (28) Этот метод требует предварительного обоснования порядка фиксирования факторов. Системы взаимосвязанных общих индексов можно подразделить на системы взаимосвязи индексов количественных показателей и системы взаимосвязи индексов средних уровней качественного показателя. Системы взаимосвязи количественных показателей Эти системы, аналогично системам индивидуальных индексов, могут быть построены двумя методами. Первый - метод изолированного влияния: Σx1y1/∑x0y0=[Σx1y0/x0y0]*[∑x0y1/x0y0]*[∑x1y1/x0y1]/[Σx1y0/x0y0] (29) где х — качественный признак; у — количественный признак.
Рисунок 9. Классификация индексов В формуле дополнительный сомножитель в квадратных скобках - индекс ковариации - характеризует степень дополнительного влияния (сверх изолированного изменения х и у), которое является результатом того, что факторы х и у изменялись не изолированно, а во взаимосвязи. Второй - цепной метод разлагает результативный индекс только на произведение сомножителей-факторов. Например, индекс товарооборота может быть разложен так: ∑q1p1/Σq0p0=(∑p1q1/p0q1)*(∑q1p0/q0p0) (30) В cистеме взаимосвязанных индексов средних уровней качественного показателя (индекс переменного состава Iперем.сред) выступает как произведение двух индексов: индекса показателя в неизменной структуре (индекс постоянного состава 1пост. сред) и индекса влияния изменения структуры явлений на динамику среднего показателя (индекс структурных сдвигов I струк. сдвиг): Iперем.сред=Iпост. сред* I струк. сдвиг Агрегатный индекс цен Чтобы получить сведения об изменении цен на все продукты в виде единого показателя, необходимо сопоставить цены при помощи неизменного количества товаров. Такой подход приводит к построению двух равноправных индексов цен: 1). 2). (31) где Ip - общий индекс цен. В статистике в основном применяется первый индекс, так как он дает возможность узнать, как изменился уровень цен на товарную массу, произведенную в отчетном году. Разность между числителем и знаменателем индекса позволяет получить абсолютную экономию или перерасход от изменения цен. Агрегатный индекс физического объема продукции и товарооборота Для того чтобы получить сведения об изменении количества различных продуктов в виде единого показателя, необходимо их соизмерить при помощи неизменного уровня цен. Такой подход приводит к построению двух равноправных индексов физического объема продукции: 1). 2). (32) где Ip - общий индекс физического объема продукции. В статистике в основном используют первый индекс, позволяющий устранить влияние изменения цен на величину индекса. Разность между числителем и знаменателем индекса дает возможность получить абсолютную величину прироста или падения количества продукции. Агрегатный индекс физического объема товарооборота строится как отношение стоимости количества продукции отчетного периода в отчетных ценах к стоимости базисного количества продукции в базисных ценах, т. е.: (33) где I pq - индекс физического объема товарооборота. Средние индексы из индивидуальных Если исходные данные не позволяют исчислить общий индекс в агрегатной форме, прибегают к построению среднего индекса из индивидуальных. Критерием правильности построения среднего индекса является его равенство агрегатному. При исчислении средних индексов используются только две формы средних: средняя арифметическая и средняя гармоническая. Средний арифметический индекс может быть получен при помощи преобразования агрегатного индекса физического объема продукции (q1 =iqq0): (34) Весами индивидуальных индексов являются слагаемые знаменателя агрегатного индекса. Средний гармонический индекс может быть получен преобразованием агрегатного индекса цен (p0 =p 1/ ip) (35) Весами индивидуальных индексов являются слагаемые числителя агрегатного индекса. Этот дополнительный неизменный показатель выступает в виде индексе в статистическом анализе. Чтобы получить сведения об изменении цен на все продукты в виде единого показателя, необходимо сопоставить цены при помощи неизменного количества товаров. Такой подход приводит к построению двух равноправных индексов цен: Основная литература 1 [520-598], 4 [65-98], Контрольные вопросы: 1.Сущность системы взаимосвязанных индексов 2. Влияния индекса на изменения структуры цен. 3. Зависимости агрегатного индекса цен от товарооборота. 4. Какой индекс в статистике в основном применяется? 5. Формула среднего арифметического индекса
Дата добавления: 2014-12-23; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |