Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эксперимент 3. Проверка закона сохранения энергии в процессе зарядки конденсатора через сопротивление




Рис.3

1. Соберите в рабочей части экрана опыта схему, показанную на рис.3. Вольтметр, включённый параллельно 5-ти лампам, будет показывать напряжение на внешнем сопротивлении, а амперметр – силу тока через нагрузку и источники тока. Напряжение на конденсаторе определяется программой автоматически и указывается в вольтах на экране монитора над конденсатором.

2. Установите суммарную э.д.с. источников тока, соответствующую значению, приведённому в табл.1 для вашей бригады.

3. При разомкнутом ключе К нажмите кнопку «Старт».

4. Нажатием кнопки мыши замкните ключ К и начните процесс зарядки конденсаторов. Одновременно с замыканием ключа включите секундомер.

5. Через время релаксации t = RС нажатием кнопки «Стоп» остановите процесс и запишите показания электроизмерительных приборов в таблицу 5.

6. Нажмите кнопку «Выбор» и обнулите показания напряжений на всех конденсаторах и на электроизмерительных приборах.

7. Повторите эти измерения ещё 4 раза и заполните две верхних строки таблицы 5.

Таблица 5. Результаты измерений и расчетов

№ опыта           Среднее
I, A            
Uc, B            
UR, B            
Аист, Дж            
DW, Дж            
Q, Дж            

ОБРАБОТКА РЕЗУЛЬТАТОВ:

1. По формулам 6, 7, 8 и измеренным значениям напряжения на конденсаторе Uc рассчитайте величины работу источника тока Аист, изменение энергии конденсатора DW и выделившегося на нагрузке количества тепла Q через время заряда, равного времени релаксации.

2. Проверьте выполнение закона сохранения энергии в процессе зарядки конденсатора по формуле: Аист =DW + Q.

3. Сделайте выводы по итогам работы.

 

Вопросы и задания для самоконтроля

1. Что представляет собой конденсатор и от чего зависит его ёмкость?

2. Выведите формулы ёмкости плоского, цилиндрического и сферического конденсаторов.

3. Как изменяется разность потенциалов на обкладках конденсатора при его зарядке и разрядке?

4. Какой ток называется квазистационарным?

5. Выведите формулы электроёмкости батареи последовательно и параллельно соединённых конденсаторов

6. Что такое время релаксации?

7. Объясните принцип работы экспериментальной установки.

8. Нарисуйте графики зависимости силы тока и напряжения от времени при зарядке и разрядке конденсатора.

9. Соберите на мониторе такую цепь, состоящую из источника тока, двух ламп, выключателя и соединительных проводов, чтобы с выключением лампы в одной цепи загоралась лампа в другой.

10. Определите заряд, который пройдёт через гальванометр в схеме, показанной на рис. 2, при замыкании ключа.

11. Конденсатор ёмкости С = 300 пФ подключается через сопротивление R =

500 Ом к источнику постоянного напряжения U0. Определите: а) время, по истечению которого напряжение на конденсаторе составит 0,99 U0; в) количество тепла, которое выделится на этом сопротивлении при разрядке конденсатора за это же время.

12. Имеется ключ, соединительные провода и две электрические лампочки. Составьте на мониторе электрическую схему включения в сеть этих лампочек, которая должна удовлетворять следующему условию: при замкнутом ключе горит только первая лампочка, при размыкании ключа первая гаснет, а вторая загорается.

13. Конденсатору ёмкостью С сообщают заряд q, после чего обкладки конденсатора замыкают через сопротивление R. Определите: а) закон изменения силы тока, текущего через сопротивление; б) заряд, прошедший через сопротивление за время t; в) количество тепла, выделившееся в сопротивлении за это время.

14. Определите количество тепла, выделившегося в цепи (рис. 4-6) при переключении ключа К из положения 1 в положение 2. Параметры цепи обозначены на рисунках.

 

 

ЛИТЕРАТУРА

1. Трофимова Т.И. Курс физики. М.: Высшая школа, 2001, Гл.11,§94.

2. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2000, Гл.16, §16.3.

 

 

ЛАБОРАТОРНАЯ РАБОТА № 3.5

 

ОПРЕДЕЛЕНИЕ ПЕРИОДА КРИСТАЛЛИЧЕСКОЙ РЕШЁТКИ МЕТОДОМ ДИФРАКЦИИ ЭЛЕКТРОНОВ

 

Ознакомьтесь с теорией в конспекте и учебниках: 1. Трофимова Т.И. Курс физики. Гл. 28, §213. 2. Детлаф А.А., Яворский Б.М. Курс физики. Гл. 37, §37.1.Запустите программу «Квантовая физика». Выберите: «Дифракция электронов». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Необходимое запишите в свой конспект. (Если вы забыли, как работать с системой компьютерного моделирования, прочитайте ВВЕДЕНИЕ стр.5 еще раз).

ЦЕЛЬ РАБОТЫ:

· Изучение волновых свойств электронов

· Знакомство с компьютерной моделью дифракции электронов при их рассеянии на одномерной монокристаллической решётке (электронография).

· Определение периода кристаллической решётки «плёнки металла».

 

КРАТКАЯ ТЕОРИЯ:

ПЕРИОД КРИСТАЛЛИЧЕСКОЙ РЕШЁТКИ - расстояние между атомами в элементарной ячейке кристалла.

 

ВОЛНЫ ДЕ БРОЙЛЯ - волны, связанные с любой свободно движущейся микрочастицей и отражающие её квантовую природу. Длина волны и частота волн де Бройля связаны соотношениями

. (1)

 

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ - лежащее в основе квантовой теории представление о том, что в поведении микрочастиц проявляются как корпускулярные, так и волновые свойства.

 

ДИФРАКЦИЯ ЭЛЕКТРОНОВ - рассеяние электронов веществом, при котором из начального пучка частиц возникают дополнительно отклонённые пучки этих частиц. Дифракция электронов может быть объяснена только на основе квантовомеханических представлений о микрочастице (электроне) как о волне. Основные геометрические закономерности дифракции электронов ничем не отличаются от закономерностей дифракции волн других диапазонов. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны с расстоянием между рассеивающими центрами:

l £ d. (2)

Образование дифракционной картины при рассеянии электронов веществом в квантовой физике интерпретируется как распределение вероятности попадания электрона в различные точки экрана. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от первоначального направления движения и попадает в некоторую точку фотопластинки, установленной за кристаллом. При длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл. Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется квадратом модуля волновой функции электрона , а дифракционная картина на экране возникает как результат вероятностного процесса. ЭЛЕКТРОНОГРАФИЯ – метод исследования структуры кристаллических веществ, основанный на дифракционном рассеянии ускоренных электрическим полем электронов. Он применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул газов и паров. При прохождении через вещество электроны, обладающие волновыми свойствами, взаимодействуют с атомами, в результате чего образуются дифрагированные пучки, интенсивность и расположение которых связаны с атомной структурой вещества и другими структурными параметрами. Рассеяние электронов определяется электростатическим потенциалом атомов, максимумы которого отвечают положениям атомных ядер.

 

Сильное взаимодействие электронов с веществом ограничивает толщину просвечиваемых образцов десятыми долями мкм. Поэтому методами электронографии изучают атомную структуру мелкокристаллических веществ, структуру поверхностей твёрдых тел, например, при исследовании явлений коррозии металлов, адсорбции и катализа.

 

В основе расчёта элементов кристаллической ячейки и определения симметрии кристалла лежит измерение упорядоченного расположения дифракционных максимумов - точек или пятен («рефлексов») на электронограммах. С волновой точки зрения дифракция электронов полностью эквивалентна дифракции света на дифракционной решётке. Поэтому при рассеянии электронов на кристаллах положение главных максимумов определяется формулой дифракционной решётки:

 

.

(3)

При малых углах дифракции

. (4)

Если на некотором расстоянии L от решётки поместить фотопластинку, то на ней будет зарегистрирована дифракционная картина в виде узких дифракционных полос – рефлексов, положения которых определяются при малых углах дифракции соотношением

, (5)

 

откуда период кристаллической решётки (межплоскостное расстояние)

 

. (6)

 

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ:

Внимательно рассмотрите схему опыта на экране монитора и зарисуйте необходимое в свой конспект лабораторной работы.

 

 

Рис.1

1. Нажмите мышью кнопку «Выбор» и, зацепив мышью движок регулятора периода решётки, установите значение d = 1,5×10-10 м.

2. Аналогичным образом установите первое значение скорости электронов, указанное в табл.1 для вашей бригады.

3. Нажмите мышью кнопку «Старт» и наблюдайте движение электронов через одномерную модель дифракционной кристаллической решётки и их регистрацию на фотопластинке.

4. Определите по шкале, расположенной в правой части окна, координаты первых трёх максимумов интенсивности дифракционной картины и запишите эти значения в таблицу 2.

5. Установите второе значение скорости для вашей бригады и повторите эти измерения ещё раз.

 

Таблица 1. Значения скорости электронов

 

Номер бригады                
v×107, м/с   1,50 2,00 1,55 2,05 1,60 2,10 1,65 2,15 1,70 2,20 1,80 2,25 1,85 2,30 1,90 2,35

 

 

Таблица 2. Результаты измерений и расчётов

 

 

  V1=   V2=
  l   Xm1   Xm2   Xm3   dэ сред   l   Xm1   Xm2   Xm3   dэ сред
                                       
dэ         dэ        
                           

 

ОБРАБОТКА РЕЗУЛЬТАТОВ И ОФОРМЛЕНИЕ ОТЧЁТА:

1. Рассчитайте для каждого значения xm по формуле (6) период дифракционной решётки dэ, запишите эти данные в табл.2 и сравните полученное среднее значение с установочным.

2. Проведите оценку погрешности измерений.

 

 

Вопросы и задания для самоконтроля

 

1. Назовите основные отличия кристаллических тел от аморфных.

2. Что такое кристаллическая решётка?

3. Что такое узлы кристаллической решётки?

4. Чем отличаются монокристаллы от поликристаллов?

5. Как можно классифицировать кристаллы?

6. Что такое ионная связь?

7. Что такое ковалентная связь?

8. Какие типы кристаллографических систем Вы знаете?

9. Определите основные свойства волн де Бройля.

10. В чём заключается соотношение неопределённостей?

11. Что такое волновая функция и в чём заключается её статистический смысл?

12. Запишите уравнение Шрёдингера для стационарных состояний.

13. Что такое дифракция микрочастиц?

14. Каковы особенности дифракции на пространственной решётке?

15. Сформулируйте условие Брэгга-Вульфа. Что оно определяет?

16. Кем и когда впервые была доказана возможность дифракции электронов?

17. Какую информацию можно получить из анализа электронограммы?

 

ЛАБОРАТОРНАЯ РАБОТА № 4.5

 

ЦИКЛ КАРНО

 

Ознакомьтесь с теорией в конспекте лекций и в учебниках: 1. Трофимова Т.И. Курс физики. Гл.9, §59; 2. Детлаф А.А., Яворский Б.М. Курс физики. Гл.11,§11.2. Запустите программу «Термодинамика и молекулярная физика», «Цикл Карно». Нажмите кнопку с изображением страницы во внутреннем окне. Прочитайте теорию и запишите краткие сведения в свой конспект лабораторной работы. Закройте окно теории, нажав кнопку с крестом в правом верхнем углу внутреннего окна.

 

ЦЕЛЬ РАБОТЫ:

· Знакомство с компьютерной моделью, иллюстрирующей цикл Карно в идеальном газе.

· Экспериментальное определение работы, совершённой газом за цикл.

· Экспериментальная проверка теоремы Карно.

 

КРАТКАЯ ТЕОРИЯ:

ЦИКЛОМ КАРНО называется круговой процесс, состоящий из двух изотермических процессов и двух адиабатических процессов. (См. окно теории.)

 

РАБОЧИМ ТЕЛОМ называется термодинамическая система, совершающая процесс и предназначенная для преобразования одной формы передачи энергии - теплоты или работы - в другую. Например, в тепловом двигателе рабочее тело, получая энергию в форме тепла, часть её передаёт в форме работы.

 

НАГРЕВАТЕЛЕМ (ТЕПЛООТДАТЧИКОМ) называется устройство, сообщающее рассматриваемой термодинамической системе энергию в форме тепла.

 

ХОЛОДИЛЬНИКОМ (ТЕПЛОПРИЁМНИКОМ) называется система (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара), поглощающая часть тепла рабочего тела.

 

ПРЯМЫМ ЦИКЛОМ называется круговой процесс, в котором рабочее тело совершает положительную работу: >0. На графике p-V прямой цикл изображается в виде замкнутой кривой, проходимой рабочим телом по часовой стрелке.

 

РАБОТА любого теплового двигателя состоит из повторяющихся циклов, каждый из которых включает в себя получение рабочим телом энергии от нагревателя, расширение рабочего тела и совершение им работы, передачу части энергии холодильнику и возвращение рабочего тела в исходное состояние. Работа, совершаемая рабочим телом за один полный цикл, складывается из работы, совершённой им при расширении, и работы, совершённой им при сжатии: А = Арасш + Асж. Учитывая, что при сжатии газ совершает отрицательную работу, последнее равенство можно переписать в виде:

 

А = Арасш - | Асж|.

 

При наличии холодильника газ перед сжатием или во время сжатия охлаждается, и потому процесс совершения им работы при сжатии протекает при меньшем давлении, чем при расширении. Поэтому |Асж| < Арасш, и, следовательно, А>0. Принцип действия теплового двигателя приведён на рис.1.

 

 

Нагреватель Т1

ÈQ1

Рабочее тело (газ, пар)

ÆА=Q1-Q2
ÈQ2

Холодильник Т2

 

Рис.1

 

От нагревателя с температурой Т1 за цикл отнимается количество теплоты Q1, а холодильнику с температурой Т2 за цикл передаётся количество теплоты Q2. Рабочее тело при этом совершает полезную работу А = Q1 - Q2. Цикл Карно изображён на рис.2,

 

P

Q1




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 683; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.