Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кручение




Сдвиг

Сдвигом называют такую деформацию твердого тела, при которой все его плоские слои, параллельные некоторой плоскости, называемой плоскостью сдвига, смещаются параллельно друг другу (рис.7.2). Сдвиг происходит под действием касательной силы F, приложенной к грани ВС, параллельной плоскости сдвига. Грань АD, параллельная ВС, закреплена неподвижно. При малом сдвиге:

, (7.9)

где D х = - абсолютный сдвиг, а g - угол сдвига, называемый также относительным сдвигом.

В любом сечении образца, параллельном плоскости сдвига, возникают уже не нормальные, а касательные упругие напряжения, определяемые по формуле

. (7.10)

По закону Гука касательные напряжения пропорциональны относительному сдвигу, т.е.

, (7.11)

где G - модуль сдвига.

Модуль сдвига численно равен тому касательному напряжению, которое возникло бы в образце при относительном сдвиге, равном единице, если бы в этом случае выполнялся закон Гука.

Между модулем сдвига, модулем Юнга и коэффициентом Пуассона существует следующее соотношение

. (7.12)

Объемная плотность энергии упругой деформации при сдвиге, как и при растяжении (7.8), прямо пропорциональна квадрату напряжения и обратно пропорциональна модулю упругости:

. (7.13)

 

Возьмем однородный стержень, закрепим его верхний конец, а к нижнему концу приложим закручивающие силы, создающие вращающий момент. В результате этого каждый радиус нижнего основания повернется вокруг продольной оси на некоторый угол. Такая деформация называется кручением.

Деформация кручения является неоднородной. Это значит, что деформация внутри образца меняется от точки к точке. Чем дальше от оси вращения, тем больше деформация.

Закон Гука для деформации кручения записывается в виде

, (7.14)

где ƒ – постоянная для данного образца величина, называемая модулем кручения, - угол кручения, - крутящий момент.

Модуль кручения показывает, какой момент сил нужно приложить, чтобы закрутить стержень на угол в 1 рад. В отличие от модулей Юнга и сдвига он зависит не только от материала, но и от геометрических размеров образца.

Деформацию кручения можно свести к деформации сдвига. Выведем выражение для модуля кручения.

Стержень (рис.7.3) можно представить состоящим из множества цилиндрических оболочек (трубок) радиусом r, длиной L и толщиной dr. Площадь основания трубки

dS = 2p r dr, (7.15)

а момент упругих сил, действующих на это основание:

dM = 2 p r dr τ r, (7.16)

где τ - тангенциальное напряжение в этом основании.

С учетом того, что каждый элемент цилиндрической трубки сдвигается на угол:

, (7.17)

то по закону Гука для деформации сдвига получим

. (7.18)

Таким образом, момент сил, действующих на цилиндрическую трубку, равен

. (7.19)

Полный момент сил, действующих на стержень радиуса R, найдется интегрированием:

. (7.20)

Сопоставляя (7.20) с законом Гука для деформации кручения (7.14), получим выражение для модуля кручения:

. (7.21)

Экспериментально модуль кручения можно измерить. С этой целью подвесим на проволоке массивное симметричное телои возбудим крутильные колебания. Эти колебания будут гармоническими с периодом

, (7.22)

где I – момент инерции тела, f – модуль кручения проволоки. Если момент инерции тела известен, то, определив период колебаний, можно вычислить по формуле (9.22) модуль кручения проволоки.




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 756; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.