Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод последовательного интерполирования




 

Метод последовательного интерполирования существенно упрощает решение задачи. Метод заключается в последовательном применении интерполяционных формул для функций одной переменной. Суть метода поясним на конкретном примере. Пусть в таблице 2.14 при , требуется вычислить значение аппроксимирующей функции в точке с координатами , . Эта точка и узлы таблицы приведены на рис. 2.9

 

 

Рис. 2.9. Расположение точек на плоскости

 

Применяя одномерную интерполяцию, например, многочлены Лагранжа, вычислим значения функции двух переменных в трех точках, которые на рис. 2.9 помечены крестиками. В результате получим три числа:

, (). (2.162)

Далее при фиксированном вычисляется многочлен Лагранжа по трем узлам, который и даст значение, аппроксимирующее функцию двух переменных в точке с координатами , :

. (2.163)

В (2.162) и (2.163)

,

.

Отметим, что метод последовательного интерполирования можно использовать, если исходная таблица имеет не полные данные, например, если в рассмотренной выше задаче отсутствует значение , что соответствует правому верхнему узлу на рис. 2.9, то это приведет лишь к тому, что будет вычислен не по 4 узлам, как в формуле (2.162), а по 3 узлам.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 593; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.