![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Численное дифференцирование при неравноотстоящих узлах
При расчетах значений производных, в случае неравноотстоящих узлов можно использовать формулу Лагранжа. Например, при вычислении первой производной в точке
Ошибка операции численного дифференцирования может быть определена по производной остаточного члена многочлена Лагранжа
В (3.5) слагаемое Если же вычислению подлежит значение
где второе слагаемое получено из (3.4) с использованием правила Лопиталя. Оценка погрешности в этом случае упрощается, так как первое слагаемое в (3.5) обращается в ноль, и тогда ошибка будет равна
По аналоги можно получить формулы численного дифференцирования для производных более высоких степеней. Пример 3.1. Выведем формулы численного дифференцирования, полученные на основе дифференцирования формулы Лагранжа для следующей таблицы
Таблица 3.1.
Построим сначала многочлен по двум узлам
где Остаточный член имеет вид
Продифференцировав эти формулы, получим:
Вычислим производную остаточного члена для узла
Формула (3.7) дает выражение для 1-ой производной и имеет первый порядок точности. Построим многочлен Лагранжа по трем узлам и его производную:
Вычислим значения первой производной по формуле (3.9) и остаточные члены по формуле (3.6) в узловых точках:
Итак, вычислив значения первой производной по трем узлам, получаем формулы с точность 2-го порядка. Увеличив число узлов на единицу, порядок точности формул для вычисления 1-ой производной также увеличится на единицу. То есть порядок точности формул для производных первого порядка на единицу меньше числа узлов. Отметим, что для вычисления В случае численного дифференцирования при неравноотстоящих узлах можно воспользоваться также формулой Ньютона (2.24). Тогда, представив многочлен Ньютона в виде
где
Если первая производная в (3.11) оценивается по первому слагаемому, то она имеет первый порядок точности, если по первым двум слагаемым, то ее порядок точности будет равен 2 и т.д. По аналогии можно вычислить и другие производные, например, численно оценить производную 2-го порядка можно по формуле
Пример 3.2. Таблица значений функции имеет вид:
Таблица 3.2.
Требуется найти аналитическое выражение для оценки второй производной функции. Таблица разделенных разностей для заданной функции имеет вид (см. п. 2.5): Таблица 3.3.
Тогда выполнив расчеты по формуле (3.12) получим:
Остаточный член для этой формулы можно вычислить, продифференцировав формулу (3.5) по
Дата добавления: 2014-12-29; Просмотров: 1116; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |