Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Исследование оптических свойств тонких пленок




 

В лаборатории для исследования оптических свойств прозрачных пленок используется спектрофотометр "Specord UV-VIS", предназначенный для работы в ультрафиолетовой и видимой областях спектра и фотометр ЛМФ-72М. Рассмотрим конкретные задачи, которые можно решить, используя фотометрические приборы.

 

 

1. Определение показателя преломления прозрачной подложки

Показатель преломления является одной из основных оптических характеристик. Он определяет скорость распространения световой волны в веществе. Знание его необходимо для материалов, используемых в оптике.

При падении излучения интенсивностью I0 на прозрачную подложку одна часть пучка отражается (IR), другая проходит через нее (IT) (рис.17). Не учитывая поглощения излучения внутри подложки, отметим, что доля прошедшего и отраженного излучения зависит от показателя преломления:

 

Рис. 17. Схематический ход лучей при падении света на прозрачную подложку

Коэффициент пропускания (Т) и коэффициент отражения подложки (R) на длине волны l могут быть рассчитаны следующим образом:

где

nп - показатель преломления подложки на длине волны l.

Таким образом, измерив коэффициент пропускания на нужной длине волны, из этого выражения можно получить показатель преломления подложки. Падение света на подложку должно быть близким к нормальному.

2. Определение толщины прозрачной пленки на прозрачной подложке

Для прозрачных тонких диэлектрических и полупроводниковых пленок при падении на них света характерны интерференционные явления (рис.18).

Рис.18. Схематический ход лучей через систему прозрачные пленка-подложка

 

При определенных условиях при сложении отраженных или прошедших пучков будет наблюдаться интерференция с усилением или с ослаблением интенсивности, и спектр пропускания (отражения) будет выглядеть следующим образом (рис.19).

Рис.19. Спектр пропускания системы пленка-подложка

Не рассматривая математического вывода формул, отметим, что на спектре пропускания системы пленка-подложка при нормальном падении излучения экстремальные значения наблюдаются при условии nпл·d=m·l/4,

где nпл-показатель преломления пленки;

d-толщина пленки;

m - порядок интерференции;

l длина волны в экстремуме.

Максимальные значения коэффициента пропускания соответствуют четным m, минимальные - нечетным. Для двух соседних экстремумов с четным m можно записать:

nпл·d = m·lm/4=(m+2)· lm+2/4,

lm и lm+2 - длины волн, соответствующие соседним экстремумам с четным m.

Отсюда

Если показатель преломления пленки неизвестен, то его находят из выражения:

где Т-коэффициент пропускания системы пленка-подложка для нечетного m; nпл - показатель преломления пленки;

nп - показатель преломления подложки;

Определив m, nп, nпл, определяют толщину пленки d.

 

3. Измерение коэффициента пропускания металлических пленок

В отличие от диэлектриков и полупроводников в металлах большое число электронов слабо связано с атомами металла, и эти электроны считают свободными. Наличием свободных электронов объясняются особенности отражения света от металлической поверхности. Вторичные волны, вызванные вынужденными колебаниями свободных электронов, порождают сильную отраженную волну, интенсивность которой может достигать 95% (и даже больше) интенсивности падающей, и сравнительно слабую волну, идущую внутрь металла. Так как плотность свободных электронов весьма значительна (~ 1022 в 1 см3), то даже очень тонкие слои металла отражают большую часть падающего на них света. Та часть световой энергии, которая проникает внутрь металла, испытывает в нем поглощение.

Какая доля света не пропускается металлом вследствие отражения и какая задерживается в нем благодаря поглощению, зависит от его проводимости. В идеальном проводнике поглощение равно нулю, так что падающий свет полностью отражается. К такому идеалу приближаются серебряные пленки. В металлах хуже проводящих, например, в железе отражение может составлять всего лишь 30-40%, так что непрозрачная пленка железа толщиной не более доли микрона поглощает около 60% падающего на нее света.

Таким образом, характерная особенность металла, состоящая в его высокой отражательной способности и проявляющаяся в наличии особого "металлического" блеска чистой поверхности, связана с его электропроводностью. Чем больше коэффициент электропроводности, тем, в общем случае, выше отражательная способность металлов.

В нашей лаборатории отражательная способность металлов может быть измерена с помощью гелий-неонового лазера на длине волны 630 нм. Литературные данные для близкой длины волны дают следующую связь коэффициента отражения металлической пленки на длине волны 600 нм и удельного сопротивления:

 

 

Металл R, % ρ, 10-6 Ом·см
Серебро 98,4 2,07
Медь 92,8 2,28
Золото 91,9 2,89
Алюминий 91,0 3,86

 

Но высокие значения коэффициента отражения можно получить лишь для пленок, полученных в оптимальных условиях. Факторами, влияющими на коэффициент отражения, являются: скорость напыления, давление во время напыления, толщина напыленной пленки, температура подложки, угол падения вещества, степень чистоты испаряемого материала и, наконец, старение полученного покрытия на воздухе.

Поглощение света металлами может быть использовано для оценки толщины металлической пленки. Прохождение света через проводящие вещества определяется соотношением:

I=I0exp(-4πnkd/l),

где d-толщина поглощающего слоя;

n - показатель преломления для длины волны l;

k - показатель поглощения для длины волны l;

I0 - интенсивность падающего излучения;

I - интенсивность прошедшего излучения.

Измерение коэффициента пропускания полупрозрачной металлической пленки (I/I0) позволит оценить ее толщину по приведенной выше формуле.

Таблица 2.1

Материал l = 500 нм
n k
Cu 1,06 2,55
Fe 1,46 2,17
Mo 3,15 1,18
Ni 1,54 2,01
V 2,65 2,56

 


Определение коэффициента пропускания на фотометре ЛМФ-72М

 

Фотометр типа ЛМФ-72 предназначен для измерения коэффициента пропускания и оптической плотности в спектральном диапазоне от 365 до 750 нм и определения концентрации растворов по градуировочным графикам, а также как индикатор при проведении нефелометрического и флуориметрического анализа. Оптическая схема фотометра приведена на рис.20.

Рис.20. Оптическая схема фотометра ЛМФ-72М

1-лампа накаливания;

2-конденсор;

3-объектив;

4-щелевая диафрагма;

5-модулятор;

6-сменный интерференционный или абсорбционный светофильтр;

7-тепловой светофильтр;

8-измеряемый образец;

9-абсорбционный светофильтр; '

10-защитное стекло;

11-фотоумножитель.


Лабораторный фотометр выполнен по однолучевой схеме с модуляцией светового потока и непосредственным отсчетом. При измерении коэффициента пропускания световой поток от лампы накаливания (1), сформированный конденсором, состоящим из линз (2), и объективом (3) в параллельный пучок, через плавно регулируемую щель диафрагмы (4), модулятор светового потока (5), интерференционный светофильтр (6) проходит сквозь измеряемый образец и попадает на фотокатод светоприемника.

 

Порядок работы

1. Включить фотометр в сеть. Время прогрева прибора 10-15 мин.

2. Произвести калибровку шкалы Т. Для этого в гнездо "фильтр" вставьте интерференционный светофильтр с необходимой длиной волны в максимуме пропускания, кюветодержатель в положение "0". Нажмите кнопку "У" и, вращая ручку "0-точно", совместите стрелку показывающего прибора с отметкой "0" шкалы. Установите кюветодержатель в положение "100", ручкой "диафрагма" подведите стрелку прибора к отметке "100" шкалы, затем ручкой "100-точно" совместите стрелку с отметкой "100".

3. Измерение коэффициента пропускания. Установите кюветодержатель в положение "0". Снимите крышку и вставьте измеряемый образец в держатель. Закройте крышку, переведите кюветодержатель в положение "100" и произведите отсчет по шкале измерительного прибора (коэффициент пропускания в процентах).

4. Выключите фотометр.

При работе на фотометре запрещается:

- производить смену светофильтров в положении "100".

- выполнять измерения при открытой измерительной камере.


Исследование спектров пропускания и поглощения в ультрафиолетовой и видимой области спектра на приборе "Specord UV-VIS"

"Specord UV-VIS" - автоматический двухлучевой спектрофотометр, регистрирующий линейно пропускание или экстинкции проб как функцию волнового числа. Представление спектров через волновое число является удобным, так как по соотношению E = hν = hc/l = hc , где

Е-энергия;

h - постоянная Планка;

с - скорость света;

ν - частота;

l - длина волны;

- волновое число,

энергия прямопропорциональна волновому числу.

Принципиальная оптическая схема спектрофотометра "Specord UV-VIS" приведена на рис.21.

В качестве источника света в ультрафиолетовой области спектра используется дейтериевая лампа, в видимой - лампа накаливания. Световой пучок попадает на входную щель монохроматора, откуда монохроматический пучок направляется на зеркальный прерыватель, где он разделяется на два потока, образующие канал измерения и канал сравнения. На приемник излучения, в качестве которого используется сурьмяно-цезиевый фотоумножитель, падает свет то из канала образца, то из канала сравнения. Регистрация спектров производится пером на специальном бланке.

В конструкции спектрофотометра предусмотрены различные параметры регистрации. В настоящий момент на приборе установлены: масштаб волнового числа-12.5мм/1000 см-1; время регистрации спектра - 4.4 мин/лист; скорость регистрации-5000 см-1/мин.

 

Рис.21. Оптическая схема спектрофотометра "Specord UV-VIS"

 

Отсчет волнового числа осуществляется по нониусу. При работе используются следующие масштабы ординат:

0 – 100 %-коэффициент пропускания, стандартная область;

0 – 20 %-коэффициент пропускания, растяжение ординат для образцов с малой проницаемостью;

-0,1 - +1,4-экстинкция.

 

Порядок работы на спектрофотометре "Specord UV VIS"

1. Включить вилку прибора в сеть. Нажать кнопку "Сеть".

2. Включить лампу (источник света) для соответствующего участка спектра.

3. Вставить перо самописца.

4. Используя кнопки "Быстро вперед" и "Быстро назад", по нониусу против нуля установить целое число (например, 21000 см-1). Положить регистрационный лист на каретку самописца так, чтобы при закрытом канале измерения перо самописца находилось в точке пересечения горизонтальной нулевой линии и вертикальной черты.

5. Проверить положение нуля и правильность установки регистрационного листа, проведя пробную регистрацию (нажать кнопку "Пуск").

6. Установить 100%-ю линию. Открыть канал измерения и провести пробную регистрацию. Если регистрируемая линия проходит параллельно 100%, то она выводится на 100% - ю ручкой 100%-й коррекции.

7. Нажать кнопку "Быстро назад". Каретка быстро движется вправо, а регистрирующее устройство занимает левое крайнее положение.

8. Поместить измеряемый образец в кюветный отсек в ближний канал.

9. Нажать клавишу "Пуск". Начатая таким образом регистрация может быть прервана в любом месте нажатием клавиши "Стоп".

10. Вынуть регистрационный лист, выключить лампу, отжать кнопку "Сеть".

 

Кнопочное управление на лицевой панели

- Сеть

- Быстро вперед. Каретка быстро двигается влево, одновременно происходит прогон волнового числа.

- Быстро назад. Каретка быстро двигается вправо.

- Регистрация с автоматическим возвратом каретки.

- Пуск. Начало записи спектра.

- Стоп. Регистрирующее устройство останавливается.

- Источник излучения.





Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 4034; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.041 сек.