Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тренировка и испытание катода в диодной лампе




В ходе тренировки ЭВП приобретают стабильные параметры. Процесс тренировки можно проводить либо в конце откачки ("на насосе"), либо после отпайки прибора. При этом окончательно активируется катод (он приобретает высокую и стабильную эмиссию), более тщательно очищаются электроды (уменьшается давление остаточных газов, происходит "жестчение"), на электродах разрушаются центры возникновения пробоев.

Тренировка проводится в 2-3 этапа при включении ЭВП в соответствующие электрические схемы в течение нескольких десятков минут или нескольких часов (в зависимости от типа прибора).

Активирование катода заключается в получении в оксидном слое небольших количеств свободного бария (кислородных вакансий) и его равномерном распределении по объему и поверхности оксидного слоя. Количество атомов металла на поверхности оксидного слоя может достигать величины 1012-1013 атомов/см2 (полагают, что моноатомный слой образуется при 5·1014 атомов/см2).

Основным путем получения бария в ходе активирования оксидного катода является процесс восстановления оксида присадками, имеющимися в материале керна катода (вольфрам, магний, кремний, углерод), а также углеродом, образующимся в ходе разложения биндера. При разложении покрытия возможен процесс:

С + СО2 = 2 СО, (8)

образующийся при этом газообразный оксид углерода также является хорошим восстановителем.

Ряд присадок при реакциях с оксидом бария образуют на границе с керном катода наряду с металлом, силикаты и вольфраматы - соединения, обладающие низкой тепло - и, электропроводностью, что ухудшает условия работы оксидного катода.

Ранее полагали, что при использовании кернов катода из пассивного (без присадок) никеля активирование при отборе тока эмиссии идет в основном за счет электролитического переноса бария в оксидном слое под действием приложенного поля с последующей нейтрализацией ионов бария на границе с керном и выделением кислорода в вакуум. Однако подобный механизм в последнее время признается несостоятельным.

Выявлены следующие особенности активирования оксидного слоя током: объемность активирования, его зависимость от проходящего тока, поля и температуры, связь с электрическим пробоем.

Установлено, что при пропускании тока в начальной стадии из оксидного слоя с большой скоростью удаляется кислород и сравнительно слабо испаряется с поверхности барий. Пока трудно говорить определенно о механизме активирования при токоотборе.

Активированный оксидный слой является реакционноспособной системой, чувствительной к микроколичествам посторонних веществ. Обычно при взаимодействии активированного оксидного слоя с остаточными газами (О2, СО2, Н2О и др.) происходит существенное уменьшение термоэлектронной эмиссии и отравление катода. Отравление может быть обратимым и необратимым, оно зависит от давления и состава остаточных газов, температуры.

В лабораторных условиях после термического разложения катодного покрытия, продолжая откачку, приступают к тренировке диодной лампы. Принципиальная электрическая схема для тренировки изображена на рис.29.

Предлагается тренировку вести в два этапа:

1. Активирование перекалом с токоотбором в течение 3-10 мин (Uн=10-12,5 В; Ua=50-250 B);

2. Стабилизация параметров в течение 5-20 мин (Uн=7-7,5B; Ua=150 B).

Обычно нормальным (рабочим) напряжением накала катода считают Uн=6,3 В. Первый этап тренировки проводят следующим образом: устанавливают Uн=10 В; включают тумблер "высокое напряжение" и регулятором подают на анод напряжение Ua=50 B; размыкая шунтирующий провод нажатием кнопки (3), измеряют анодный ток (Iа) с помощью микроамперметра. При этом сначала используют диапазон на 1000 мкА (переключатель (4) замкнут, и большая часть тока идет через сопротивление R=20 Ом, так как сопротивление микроамперметра составляет 537 Ом). Затем повышают анодное напряжение скачками по 50 В и каждый paз фиксируют Iа (при нажатии кнопки (4). Аналогичные операции производят при напряжениях накала 11 и 12 В. Второй этап тренировки проводят при неизменных Ua=l50 B и Uн=7-7,5 B, измеряя анодный ток через минуту. Обычно на первом этапе тренировки эмиссионная способность катода растет, а на втором этапе несколько падает за счет отравления катода. Очевидно, в условиях лабораторной установки, когда не удается достичь остаточного давления газов менее 10-4 мм рт. ст., этап стабилизации не стоит затягивать.

 

 

Рис. 29. Принципиальная электрическая схема для тренировки и измерения анодного тока диодной разборной лампы:

1 - разборная диодная лампа; 2 - регулятор напряжения; 3 - кнопка для включений микроамперметра; 4 - переключатель диапазонов измерения тока; 5 - оксидный катод; 6 - подогреватель катода; 7 - анод; 8 - тумблер для подачи напряжения на анод

 

Процесс изготовления ЭВП в производстве обычно завершается их испытаниями. В ходе электрических испытаний определяются электрические характеристики и параметры ЭВП. Статические параметры характеризуют электрические свойства ЭВП без нагрузок в его цепях. Динамические параметры характеризуют ЭВП в условиях работы с определенной нагрузкой в анодной цепи. Проводят также механические испытания ЭВП и испытания на долговечность.

В ходе лабораторной работы нас прежде всего будет интересовать эмиссионная способность катода, определяемая обычно путем измерения его тока эмиссии. За ток эмиссии принимают ток катода при нулевом потенциале его поверхности, т. е. когда отсутствуют электроны, возвращающиеся обратно на катод (режим полного токоотбора имеет место при больших значениях анодного напряжения). Если анодного напряжения недостаточно, чтобы отобрать с катода все электроны, покидающие его под действием нагрева, то около катода скапливается пространственный заряд.

Ток эмиссии с термокатода определяется многими факторами: температурой (Т) и размером поверхности эмиттера (S), величиной анодного напряжения (Ua) и работой выхода электрона (φ). Прячем работа выхода оксидного катода зависит от его температуры и описывается довольно хорошо в диапазоне 300-1100 К уравнением, эB:

φт = φ0 + αТ = (1,12 ± 0,02) + (4,4 ± 0,3) · 10-4Т

Многие параметры катода можно определить, получив серию так называемых вольтамперных характеристик диода Ia=f(Ua) при разных значениях температуры катода (Uн).

Как известно, на вольтамперных характеристиках диодов с оксидным катодом не наблюдают резко выраженного участка насыщения (как для металлических катодов) и обычно за ток эмиссии (ток насыщения) принимают ток, соответствующий точке перегиба на характеристике. Если в области пространственного заряда анодный ток определяется выражением:

Ia = KUa3/2,

то в области насыщения (здесь проявляется эффект Шоттки), с температурой ток меняется в соответствии с уравнением Ричардсона - Дэшмана:

Iа=АТ2е-11600 /Т (при нулевом потенциале катода).

Если удастся измерить температуру катода (например, оптическим пирометром), то можно вычислить постоянную в уравнении Ричардсона - Дэшмана (А) и работу выхода электрона (φ).

В условиях нашей лаборатории измерение тока эмиссии проводится в статическом режиме. Чтобы избежать перегрузки (перегрева) и отравления катода, напряжение на анод следует подавать на короткое время (несколько секунд). Существуют более сложные (не портящие испытуемый катод) и дорогие методы измерения тока эмиссии: в импульсном режиме и режиме глубокого недокала.

Уже в ходе тренировки можно оценить область значений напряжений накала катода, в которой анодные токи не будут превышать 1000 мкА. Теперь остается получить вольтамперные характеристики при 3-5 значениях Uн, напряжение на аноде следует увеличивать на 25-50 B. Для более точного обнаружения точки перегиба на характеристиках следует построить их в логарифмических координатах.

Можно также построить так называемую накальную характеристику Ia=f(Uн) при Ua=const (в области насыщения).

В заключение следует оценить плотность отбираемого тока, А/см2, для этого измеряют величину эмитирующей поверхности и ток эмиссии при рабочей температуре катода (700-900°С). Катоды с отбором тока в непрерывном режиме могут иметь плотность тока до 0,3 А/см2.

 

Контрольные вопросы

1. Назначение процесса тренировки ЭВП.

2. В чем состоит процесс активирования оксидного катода?

3. Как следует проводить процесс тренировки?

4. Каким испытаниям подвергаются готовые ЭВП?

5. Как оценивается эмиссионная способность оксидного катода?





Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 811; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.