КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Степенные средние. Методика их расчета
К Степенным средним относятся: 1. средняя арифметическая
2. средняя гармоническая
3. средняя геометрическая
Запишем формулы степенных средних, придавая К значения: -1,0,1,2.
При К = -1 получим среднюю гармоническую величину:
При К = 0 получим среднюю геометрическую величину:
Для раскрытия неопределенности прологарифмируем обе части степенной средней:
и подставим К = 0, получим
т.е. неопределенность типа 0 / 0.
Для ее раскрытия используем правило Лопиталя и найдем (lim (ln X)) как предел отношения производных по k числителя и знаменателя в правой части равенства
При k ® 0
Таким образом, при k= 0,
после потенцирования
При К = 1 получим среднюю арифметическую:
При К= 2 среднюю квадратическую:
и т.д. для любой степени. Приведенные выше формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Однако, когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторения индивидуальных значений признака (вес) присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних и имеют и имеют следующий вид:
средняя гармоническая:
средняя геометрическая:
средняя арифметическая:
средняя квадратическая:
где f i - частота повторения индивидуального значения признака (его вес)
Весом может быть частость, т.е. отношение частоты повторения индивидуального значения признака к сумме частот:
Известно, что степенные средние разных видов, исчисленные по одной и той же совокупности, имеют различные количественные значения. И чем больше показатель степени К, тем больше и величина соответствующей средней:
Это свойства степенных средних возрастать с повышением показателя степени определяющей функции называется мажорантностью средних.
30. Структурные средние: мода и медиана. Графическое определение структурных средних Для характеристики структуры совокупности применяются особые показатели - структурные средние. К таким показателям относятся мода и медиана. Модой (Мо) называется чаще всего встречающийся вариант. В дискретном ряду мода- это варианта с наибольшей частотой. В интервальном ряду модой считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частотность). Мода для нтервального ряда:
где хм - нижняя граница модального интервала,
д/ - величина модального интервала, /w - частота, соответствующая модальному интервалу.
4 /v/ - частота, предшествующая модальному интервалу, /д/ - частота интервала, следующего за модальным. Медиана (Me) - это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньше, чем средний вариант, а другая - больше. Для ранжированного ряда (т.е. построенного в порядке возрастания или убывания индивидуальных величин) с нечетным числом, членов медианой является варианта, расположенная в центре ряда. (Например, данные о стаже работы семи продавцов: 1,2,2,3,5,7,10 - медианой является 4-ая варианта — З г.) Для ранжированного ряда с четным числом членов медианой будет средняя арифметическая из двух смежных вариант. Например: в бригаде продавцов из 6 человек распределение по стажу работы следующее: 1,3,4,5,7,9 - медиана = (4+5)/2 = 4,5г. Для интервального вариационного ряда: Медианный интервал - это интервал, где сумма накопленных частот составляет половину (или больше) всей суммы частот ряда.
Дата добавления: 2014-12-23; Просмотров: 1137; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |