Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Типы оптимизационных задач




Признаки оптимизационной задачи

По теме практического занятия

Краткие теоретические и учебно-методические материалы

Задачи, решаемые с помощью оптимизатора, имеют три характерных признака.

Это наличие:

- целевой ячейки;

- изменяемых ячеек;

- ограничивающих ячеек.

Целевая ячейка - единственная. В нее пользователь должен ввести формулу, указав позднее в программном диалоге, какой экстремум необходим (максимум или минимум). После завершения построения модели и инициализации расчета программа автоматически должна добиться для этой ячейки экстремального результата. Формула будет вычислять целевой показатель. Для целевой ячейки в программном диалоге (а не в самой ячейке) можно установить и конкретное целевое значение, если для его достижения необходимо будет подбирать значения взаимосвязанных с ней ячеек.

Ограничивающих ячеек может быть не менее одной на каждую изменяемую ячейку. Может существовать и некоторое количество дополнительных ячеек ограничений, например, ограничение по объему ресурса и ограничения по спросу (минимальный спрос, максимальный спрос).

Общее же количество всех ячеек, занятых под описание оптимизационной проблемы, в программе Excel не может быть более 1000.

 

Под признаки оптимизационной задачи подходят следующие типы задач:

- Задачи о перевозках: например, минимизация расходов по доставке товаров с нескольких фабрик в несколько магазинов с учетом спроса.

- Задачи распределения рабочих мест: например, минимизация расходов на содержание штата с соблюдением требований, определенных законодательством.

- Управление ассортиментом товаров: извлечение максимальной прибыли с помощью варьирования ассортиментным набором товаров (при соблюдении требований клиентов). Аналогичная задача возникает при продаже товаров с разной структурой затрат, рентабельностью и показателями спроса.

- Замена или смешивание материалов: например, манипуляция материалами с целью снижения себестоимости, поддержания необходимого уровня качества и соблюдения требований потребителей.

Транспортная задача

 

Транспортная задача является классической задачей исследования операций.

Рассмотрим простой пример транспортной задачи. Допустим, компания имеет два учебных центра и две организации. Приведем конкретные данные о загруженности каждого из учебных центров (в усл. ед.), потребности каждой организации (в усл. ед.) и стоимости обучения (тыс. руб.) (см. Таблицу 3).

Таблица 3

  Организация В1 Организация В2 Наличие образовательных чеков
Учебный центр А1      
Учебный центр А2      
Запрос на обучение      

 

На пересечении столбцов и строк цифры указывают стоимость обучения в соответствующем учебном центре соответствующей организации. Графа «Наличие образовательных чеков» означает количество мест в учебном центре, а графа «Запрос на обучение» - требования (заказ) каждой организации на выделение образовательных чеков для обучения сотрудников.




Поделиться с друзьями:


Дата добавления: 2014-12-24; Просмотров: 1277; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.