КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интерполяционный полином Лагранжа
Будем строить интерполяционный полином в виде , (4.9) где – многочлены степени не выше п, обладающие следующим свойством: . Действительно, в этом случае полином (4.9) в каждом узле xj, j=0,1,…n, равен соответствующему значению функции yj, т.е. является интерполяционным. Построим такие многочлены. Поскольку при x=x0,x1,…xi-1,xi+1,…xn, можно следующим образом разложить на множители где с – постоянная. Из условия получим, что и . Интерполяционный полином (4.1), записанный в форме , (4.10) называют интерполяционным полиномом Лагранжа. Приближенное значение функции в точке x*, вычисленное с помощью полинома Лагранжа, будет иметь остаточную погрешность (4.8). Если значения функции yi в узлах интерполирования xi заданы приближенно с одинаковой абсолютной погрешностью , то вместо точного значения будет вычислено приближенное значение , причем , где – вычислительная абсолютная погрешность интерполяционного полинома Лагранжа. Окончательно имеем следующую оценку полной погрешности приближенного значения . . В частности, полиномы Лагранжа первой и второй степени будут иметь вид
а их полные погрешности в точке x* ,
где ; . Существуют другие формы записи того же интерполяционного полинома (4.1), например, рассматриваемая далее интерполяционная формула Ньютона с разделенными разностями и ее варианты. При точных вычислениях значения Рn(х*), получаемые по различным интерполяционным формулам, построенным по одним и тем же узлам, совпадают. Наличие же вычислительной погрешности приводит к различию получаемых по этим формулам значений. Запись многочлена в форме Лагранжа приводит, как правило, к меньшей вычислительной погрешности [1-3]. Использование формул для оценки погрешностей, возникающих при интерполировании, зависит от постановки задачи. Например, если известно количество узлов, а функция задана с достаточно большим количеством верных знаков, то можно поставить задачу вычисления f(x*) с максимально возможной точностью. Если, наоборот, количество верных знаков небольшое, а количество узлов велико, то можно поставить задачу вычисления f(x*) с точностью, которую допускает табличное значение функции, причем для решения этой задачи может потребоваться как разрежение, так и уплотнение таблицы.
§4.3. Разделенные разности и их свойства.
Понятие разделенной разности является обобщенным понятием производной. Пусть в точках x0, x1,…xn заданы значения функций f(x0), f(x1),…,f(xn). Разделенные разности первого порядка определяются равенствами разделенные разности второго порядка – равенствами,
а разделенные разности k -го порядка определяются следующей рекуррентной формулой: (4.11) Разделенные разности обычно помещаются в таблицу следующего вида:
Рассмотрим следующие свойства разделенных разностей. 1. Разделенные разности всех порядков являются линейными комбинациями значений f(xi), т.е. имеет место следующая формула: . (4.12) Докажем справедливость этой формулы индукцией по порядку разностей. Для разностей первого порядка . Формула (4.12) справедлива. Предположим теперь, что она справедлива для всех разностей порядка . Тогда, согласно (4.11) и (4.12) для разностей порядка k=п+1 имеем Слагаемые, содержащие f(x0) и f(xn+1), имеют требуемый вид. Рассмотрим слагаемые, содержащие f(xi), i=1, 2, …,n. Таких слагаемых два - из первой и второй сумм: т.е. формула (4.12) справедлива для разности порядка k=п+1, доказательство закончено.
2. Разделенная разность есть симметрическая функция своих аргументов x0, x1,…xn (т.е. не меняется при любой их перестановке): . Это свойство непосредственно следует из равенства (4.12).
3. Простую связь разделенной разности f[x0, x1,…,xn] и производной f(n) (x) дает следующая теорема. Пусть узлы x0, x1,…xn принадлежат отрезку [a, b] и функция f(x) имеет на этом отрезке непрерывную производную порядка п. Тогда существует такая точка xÎ[a, b], что . (4.13) Докажем сначала справедливость соотношения (4.14) где . Согласно (4.12) выражение в квадратных скобках есть f [x0, x1, …, xn, x]. Из сравнения (4.14) с выражением (4.7) для остаточного члена Rn(x)=f(x)-Ln(x) получим (4.13), теорема доказана. Из этой теоремы вытекает простое следствие. Для полинома п -ой степени f(x) = a0 xn+a1 xn-1+…an производная порядка п, очевидно, есть и соотношение (4.13) дает для разделенной разности значение . Итак, у всякого многочлена степени п разделенные разности порядка п равны постоянной величине – коэффициенту при старшей степени многочлена. Разделенные разности высших порядков
§4.4. Интерполяционный полином Ньютона с разделенными разностями
Запишем интерполяционный полином Лагранжа в следующем виде: (4.15) где L0(x) = f(x0)=y0, а Lk(x) – интерполяционный полином Лагранжа степени k, построенный по узлам x0, x1, …,xk. Тогда есть полином степени k, корнями которого являются точки x0, x1, …,xk-1. Следовательно, его можно разложить на множители (4.16) где Ak – постоянная. В соответствии с (4.14) получим (4.17) Сравнивая (4.16) и (4.17) получим, что и (4.15) примет вид (4.18) который носит название интерполяционного полинома Ньютона с разделенными разностями. Этот вид записи интерполяционного полинома более нагляден (добавлению одного узла соответствует появление одного слагаемого) и позволяет лучше проследить аналогию проводимых построений с основными построениями математического анализа. Остаточная погрешность интерполяционного полинома Ньютона выражается формулой (4.8), но ее, с учетом (4.13), можно записать и в другой форме , т.е. остаточная погрешность может быть оценена модулем первого отброшенного слагаемого в полиноме Nn(x*). Вычислительная погрешность Nn(x*) определится погрешностями разделенных разностей. Узлы интерполяции, лежащие ближе всего к интерполируемому значению x*, окажут большее влияние на интерполяционный полином, лежащие дальше – меньшее. Поэтому целесообразно, если это возможно, за x0 и x1 взять ближайшие к x* узлы интерполирования и произвести сначала линейную интерполяцию по этим узлам. Затем постепенно привлекать следующие узлы так, чтобы они возможно симметричнее располагались относительно x*, пока очередной член по модулю не будет меньше абсолютной погрешности входящей в него разделенной разности.
Дата добавления: 2014-12-25; Просмотров: 3322; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |