КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Канонічні рівняння методу сил
Додаткові рівняння переміщень, що виражають рівність нулю переміщень (лінійних або кутових) у напрямках зайвих невідомих, зручно складати в так званій канонічній формі, тобто за певною закономірністю.
Рисунок 2.17 (2.7) Обчислюючи , застосуємо принцип незалежності дії сил: , де – переміщення від заданого навантаження (рис. 2.17 в); – переміщення від сили . Якщо – переміщення в напрямі від сили (рис. 2.17 г), то , і рівняння переміщень (2.7) набирає вигляду: (2.8) Це канонічна форма рівняння переміщень для один раз статично невизначуваної системи. Для системи з двома зайвими зв’язками додаткові рівняння мають вигляд: де – повне переміщення в напрямі від заданого навантаження та зайвих невідомих сил і ; – повне переміщення в напрямі від заданого навантаження та зайвих невідомих сил і . Виходячи з принципу незалежності дії сил, запишемо переміщення та у вигляді сум переміщень, спричинених окремо кожною з невідомих сил , та заданим навантаженням . Використовуючи вибрані раніше позначення переміщень, знаходимо: За аналогією можна записати в канонічній формі рівняння переміщень для будь-якої n разів статично невизначуваної системи: Повне переміщення можна визначити як добуток одиничного переміщення , спричиненого дією одиничної сили , на відповідну узагальнену силу: , тоді система рівнянь методу сил у канонічній формі набуває вигляду: (2.9) де – кількість зайвих зв'язків (ступінь статичної невизначуваності) системи. Коефіцієнти рівнянь (2.9) являють собою лінійні зміщення або кути повороту в основній (статично визначуваній) системі від дії сил і моментів , доданих по напрямкам невідомих зусиль. Вільні члени визначають відповідні узагальнені переміщення, викликані заданим зовнішнім навантаженням. Коефіцієнти і вільні члени канонічних рівнянь (2.9) обчислюються за допомогою інтегралу Максвелла − Мора: (2.10)
де складання проводиться по усім дільницям пружної системи. Для визначення інтегралів Мора (2.10) необхідно мати відповідні епюри , які будують для основної системи, що навантажена тільки силами кожною окремо, а також «вантажні» епюри , які будують також для основної системи, але від заданого зовнішнього навантаження. На відміну від просторової стержньової системи для багатопрольотної балки у виразі (2.10) залишаються складові, що містять згинальний момент та поперечну силу, а для плоскої рами − згинальний момент, поперечну і поздовжню сили. В інженерних розрахунках реальних конструкцій дію поперечних та повздовжніх сил можна не враховувати, оскільки вони вносять незначний вклад у кінцевий результат. Тому вираз (2.10) набуває вигляд: . (2.11) Коефіцієнти канонічних рівнянь (2.9) визначають за формулою На підставі теореми про взаємність переміщень [1]. Значення коефіцієнтів канонічних рівнянь, як показують вирази (2.10), залежать від співвідношення згинальних , та крутної жорсткостей поперечних перерізів стержньової системи та довжин відповідних ділянок стержня. Якщо рама зібрана з прямолінійних стержнів постійної згинальної і крутної жорсткості, то безпосереднє інтегрування в формулі Мора можна замінити перемноженням епюр по способу Верещагіна (2.3).
Дата добавления: 2014-12-26; Просмотров: 4092; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |