КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. 5 страница. В оставшейся части таблицы с двумя строками и и четырьмя столбцами клетка с наименьшим значением тарифа
В оставшейся части таблицы с двумя строками и и четырьмя столбцами клетка с наименьшим значением тарифа находится на пересечении строки и столбца , где . Положим и внесем это значение в соответствующую клетку табл. 3.1. Временно исключим из рассмотрения столбец и будем считать запасы пункта равными 120 ед. После этого рассмотрим оставшуюся часть таблицы с двумя строками и тремя столбцами . В ней минимальный тариф находится в клетке на пересечении строки и столбца и равен 3. Заполним описанным выше способом эту клетку и аналогично заполним (в определенной последовательности) клетки, находящиеся на пересечении строки и столбца , строки и столбца , строки и столбца . В результате получим опорный план При данном плане перевозок общая стоимость перевозок составляет 3)Имеются три пункта поставки однородного груза и четыре пункта потребления этого груза. На пунктах находится груз соответственно в количестве 50, 30 и 10 т. В пункты требуется доставить соответственно 30, 30, 10, 20 т груза. Расстояние между пунктами потребления задано следующей матрицей: Найти оптимальный план транспортной задачи. Решение. Сначала, используя метод северо-западного угла, находим опорный план задачи. Этот план записан в табл. 4.1
Таблица 4.1
Найденный опорный план проверяем на оптимальность. В связи с этим находим потенциалы пунктов отправления и назначения. Для определения потенциалов получаем систему Заключаем найденные числа в рамки и записываем их в каждую из свободных клеток табл. 4.2. Так как среди чисел имеются положительные, то построенный план перевозок не является оптимальным и надо перейти к новому опорному плану. Наибольшим среди положительных чисел являются поэтому для данной свободной клетки строим цикл пересчета (табл. 4.2) и производим сдвиг по этому циклу.
Таблица 4.2
Наименьшее из чисел в минусовых клетках равно 10. Клетка, в которой находится это число, становится свободной в новой табл. 4.3. Другие числа в табл. 4.3 получаются так: к числу 10, стоящему в плюсовой клетке табл. 4.2, добавим 10 и вычтем 10 из числа 20, находящегося в минусовой клетке табл. 4.2. Клетка на пересечении строки и столбца становится свободной. После этих преобразований получаем новый опорный план (табл. 4.3).
Таблица 4.3
Окончание табл. 4.3
Этот план проверяем на оптимальность. Снова находим потенциалы пунктов отправления и назначения. Для этого составляем следующую систему уравнений: Полагаем получаем Для каждой свободной клетки вычисляем число ; имеем, Таким образом, видим, что данный план перевозок не является оптимальным. Поэтому переходим к новому опорному плану (табл. 4.4).
Таблица 4.4
Сравнивая разности новых потенциалов, отвечающих свободным клеткам табл. 4.4, с соответствующими числами , видим, что указанные разности потенциалов для всех свободных клеток не превосходят соответствующих чисел . Следовательно, полученный план является оптимальным. При данном плане стоимость перевозок СПИСОК ЛИТЕРАТУРЫ
1. Кудрявцев В.А. Краткий курс высшей математики / В.А. Кудрявцев, Б.П. Демидович. – 6-е изд. – М., 1985. 2. Венцель Е.С. Теория вероятностей / Е.С. Венцель. – М.: Высш. шк.; 1999. 3. Бугров Я.С. Высшая математика: Элементы линейной алгебры и аналитической геометрии / Я.С. Бугров, С.М. Никольский. – Ростов н/Д.: Феникс, 1997. 4. Бугров Я.С. Высшая математика: Дифференциальное и интегральное исчисления / Я.С. Бугров, С.М. Никольский. – Ростов н/Д.: Феникс, 1997. 5. Кузнецов А.В. Высшая математика: Математическое программирование / А.В. Кузнецов, В.А. Сакович, Н.И. Холод. – Минск: Высшая школа, 1994. 6. Сборник задач и упражнений по высшей математике: Мат. программирование: Учеб. пособие / А.В.Кузнецов, В.А. Сакович, Н.И.Холод и др.; Под общей ред. А.В. Кузнецова, Р.А. Рутковского. – Мн. Высш. шк. 2002. 7. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман, Под ред. проф. Н.Ш. Кремера. – М.: Банки и биржи, ЮНИТИ, 2003. 8. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2000. – 543 с. 9. Шипачев В.С. Высшая математика. Учебник для вузов / В.С. Шипачев. – М.: Высш. шк., 2003. 10. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. – М.: Высш. шк., 2001. – 479 с. 11. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. Учеб. пособие для студентов вузов / В.Е. Гмурман. – М.: Высш.шк., 2001. – 400 с. 12. Данко П.Е. Высшая математика в упражнениях и задачах. – В 2 ч. Ч. 1, 2. Учеб. пособие для втузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. – М.: ОНИКС 21 век, Мир и образование, 2003. 13. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов / И.Л. Акулич. – М.: Высш. шк., 1986. 14. Общий курс высшей математики для экономистов: Учебник / Под ред. В.И.Ермакова. – М.: ИНФРА-М., 2001. 15. Хазанова Л.Э. Математические методы в экономике: Учеб. пособие / Л.Э. Хазанова. – М.: БЕК, 2002. 16. Пинегина М.В. Математические методы и модели в экономике / М.В. Пинегина. – М.: Экзамен, 2002. 17. Ефимов Н.В. Краткий курс аналитической геометрии. – 6-12-е изд. / Н.В. Ефимов. – М.: ФИЗМАТЛИТ, 2002. 18. Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов / Н.С. Пискунов. – М.: Интеграл Пресс, 2002. 19. Пантелеев А.В. Обыкновенные дифференциальные уравнения в примерах и задачах. Учеб. пособие / А.В. Пантелеев, А.С. Якимова, А.В. Босов. – М.: Высш. шк., 2001. 20. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. – 4-е изд. / Д.В. Беклемишев. – М.: Физико-математическая литература, 2002. 21. Гнеденко Б.В. Курс теории вероятностей / Б.В. Гнеденко. – М.: Наука, 2002. 22. Колемаев В.А. Теория вероятностей и математическая статистика / В.А. Колемаев, О.В. Староверов, В.Б. Турундаевский. – М.: Высш. шк., 1991. 23. Бугров Я.С. Высшая математика: Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного / Я.С. Бугров, С.М. Никольский. – Ростов н/Д.: Феникс, 1997. 24. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа / Под ред. Н.В. Ефимова, Б.П. Демидовича. – М.: Наука, 1986. 25. Сборник задач по математике для втузов: Специальные разделы математического анализа / Под ред. Ефимова Н.В., Б.П. Демидовича. – М.: Наука, 1986. 26. Пантелеев А.В. Теория функций комплексного переменного и операционное исчисление в примерах и задачах: Учеб. пособие / А.В. Пантелеев, А.С. Якимова. – М.: Высш.шк., 2001. 27. Ильин В.А. Высшая математика: Учебник / В.А. Ильин, А.В. Куркина. – М.: ТК Велби, 2002. 28. Кузнецов Ю.Н. Математическое программирование / Ю.Н. Кузнецов, В.И. Кузубов. – М.: Высш. шк., 1980. 29. Минюк С.А. Математические методы и модели в экономике: Учеб. пособие / С.А. Минюк, Е.А. Ровба, К.К. Кузьмич. – Мн.: Тетра Системс, 2002. 30. Колемаев В.А. Теория вероятностей и математическая статистика: Учебник / В.А. Колемаева, Калинина В.Н.; Под ред. В.А. Колемаева. – М.: ИНФРА-М., 1997. 31. Гусак А.А. Высшая математика. – В 2 т. – Т. 1.: Учеб. пособие для студентов вузов / А.А. Гусак. – Мн.: Тетра Системс, 1998. – 544 с.; Т. 2.: Учеб. пособие для студентов вузов. – Мн.: Театра Системс, 1998. –288 с. 32. Гусак А.А. Справочное пособие по решению задач: аналитическая геометрия и линейная алгебра / А.А. Гусак. – Мн.: Тетра системс, 1998. – 288 с. 33. Гусак А.А. Справочное пособие по решению задач: математический анализ и дифференциальные уравнения / А.А. Гусак. – Мн.: Тетра системс, 1998. – 416 с. 34. Гусак А.А. Справочное пособие по решению задач: Теория вероятностей / А.А. Гусак, Е.А. Бришикова. – Мн.: Тетра системс, 1999. – 288 с. 35. Математическое программирование: Программа, методические указания и контрольные задания для студентов заочников инженерно-экономических и экономических специальностей высших учебных заведений / В.Г. Суздаль, Л.Г. Седых, Ю.В. Боровских. – М.: Высш. шк., 1983. – 48 с. 36. Высшая математика: Программа, методические указания и контрольные задания для студентов заочников экономических специальностей высших учебных заведений / Д.П. Полозков. – М.: Высш. шк., 1976. – 55 с. 37. Теория вероятностей и математическая статистика. Методические указания и контрольные задания для студентов специальностей 0608 Бухгалтерский учет, контроль и анализ хозяйственной деятельности и 0717 Экономика, управление в бытовом и жилищно-коммунальном обслуживании, городском хозяйстве. – В 2 ч. / Сост.: В.С. Котанов. – М.: Московский технол. ин-т. 38. Шапкин А.С. Ч. 1. Случайные события и случайные величины М., 1989. – 51 с.; Ч. 2. Математическая статистика. – 41 с. 39. Сборник задач по высшей математике для экономистов: Учеб. пособие / Под ред. В.И. Ермакова. – М.: ИНФРА-М, 2001. 40. Красс М.С. Математика для экономических специальностей: Учебник / М.С. Красс. – М.: Дело, 2002. 41. Красс М.С. Основы математики и ее приложения в экономическом образовании / М.С. Красс, Б.П. Чупрынов. – М.: Дело, 2001. 42. Пантелеев А.В. Методы оптимизации в примерах и задачах: Учеб. пособие / А.В. Пантелеев, Т.А. Летова. – М.: Высш. шк., 2002. 43. Романенко В.К. Сборник задач по дифференциальным уравнениям и вариационному исчислению / В.К. Романенко, Н.Х. Агаханов, В.В. Власов, Л.И. Коваленко. – М.: ЮНИМЕДИАСТАЙЛ, 2002.
Составители: САФИН Рашит Рафаилович ЛАРИЧЕВА Галина Александровна БОГДАНОВА Маргарита Анатольевна
«МАТЕМАТИКА»
Учебно-методический комплекс
Часть 3
Методические указания к выполнению контрольных работ для студентов всех специальностей и направлений заочной формы обучения
Технический редактор: С.А. Юдина
Подписано в печать 05.02.12. Формат 60×84 1/16. Бумага писчая. Гарнитура «Таймс». Усл. печ. л. 4,59. Уч.-изд. л. 5. Тираж 150 экз. Цена свободная. Заказ № 42.
Отпечатано с готовых авторских оригиналов на ризографе в издательском отделе Уфимской государственной академии экономики и сервиса 450078, г. Уфа, ул. Чернышевского, 145; тел. (347) 241-69-85.
Дата добавления: 2014-12-26; Просмотров: 424; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |