Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Наиболее распространенные физические и физико-химические методы анализа




Большое распространение в учебных, производственных, мониторинговых и исследовательских лабораториях получили оптические, электрохимические, хроматографические, радиометрические, масс-спектрометрические и некоторые другие методы анализа.

Оптические методы. К оптическим методам относятся: анализ по светопоглощению (в том числе фотоколориметрия и спектрофотометрия или абсорбционная спектроскопия); спектральный анализ, основанный на использовании спектров, испускаемых анализируемым веществом в пламени, в электрической дуге или искре; а также спектров при фосфоресценции, флуоресценции или рассеянии света; поляриметрия, рефрактометрия и др.

Наиболее доступны колориметрические методы, не требующие применения очень сложных и дорогих приборов. Этими методами с большой чувствительностью можно определять содержание очень многих элементов, находящихся в виде примесей. Вместе с тем методы абсорбционного спектрального анализа могут быть использованы для анализа не только примесей, но и основных компонентов исследуемого вещества. С этой целью применяют метод анализа, называемый дифференциальной спектрофотометрией.

Пользуясь оптическими методами, можно быстро и с большой чувствительностью анализировать всевозможные вещества; результаты определений в большинстве случаев регистрируются фотоэлектрическим, фотографическим или механическим путем. Применяя фотоэлементы, наиболее легко автоматизировать выполнение анализа этими методами.

Электрохимические методы. Электрохимические методы анализа: кондуктометрия, потенциометрия, полярография, инверсионная вольамперометрия, кулонометрия и др. – обладают довольно высокой чувствительностью и при этом весьма просты; эти методы дают возможность особенно легко автоматизировать выполнение анализа. Так, например, кулонометрическими методами можно определять 0,01 – 0,1 мкг/мл марганца, железа, серебра; полярографически можно определять микрограммовые (а вольтамперометрически – нанограммовые) количества меди, свинца, цинка, кадмия и других элементов.

Хроматографические методы. Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь наиболее универсальными методами одновременно разделения и определения веществ и (реже) элементов.

Известны методы сорбционной, осадочной и распределительной хроматографии. В свою очередь сорбционная хроматография подразделяется на молекулярную и ионообменную; осадочная – на хроматографию на смеси «носитель – осадитель» и на ионообменниках, заряженных ионами осадителями. Важными видами распределительной и осадочной хроматографии являются соответствующие виды хроматографии на бумаге. Особенно большое применение получила газо-жидкостная и жидкостная хроматография. В настоящее время имеются приборы для быстрого анализа этим методом сложных смесей различных технических продуктов (например, нефтеперерабатывающей и газовой промышленности), а также в различных природных и техногенных смесях веществ (например, в отходах) и др.

Качественный анализ можно проводить непосредственно по хроматограммам; для количественных же определений хроматографическое разделение часто служит лишь подготовительной операцией (см. ниже), позволяющей выделять и направлять один за другим компоненты анализируемой смеси в анализатор – прибор для количественных определений. Так, сложные смеси газов разделяются на хроматографической колонке, к которой присоединен газоанализатор, определяющий количества отдельных газов по теплопроводности, по термохимическому эффекту или каким-нибудь другим способом.

Укажем также на важный пример использования ионитов (специальных ионообменных смол) в хроматографии. Для определения редкоземельных элементов и их радиоактивных аналогов – актинидов применяют жидкостной хроматографический (ЖХ) ионообменный метод, который основан на том, что наиболее тяжелый элемент, выходит в составе комплекса из колонки первым; за ним следуют один за другим более легкие элементы.

В настоящее время успешно развиваются количественные хроматографические методы, что позволяет в ряде случаев существенно ускорить количественный анализ, обладающий высокой специфичностью.

Радиометрические методы. Среди радиометрических методов наибольшее значение имеют активационный анализ, радиометрическое титрование и метод изотопного разбавления.

Активационный анализ очень чувствителен при использовании потока нейтронов в атомных реакторах (1014 нейтронов/см2-сек). Пользуясь активационным анализом, можно, например, определить примеси: до 10 4 % мышьяка в окиси германия (в полупроводниковой промышленности), до 10 -7 % редкоземельных элементов в свинце, до 10 -6 % кобальта и меди в железе. Применяя другой – метод меченых атомов, решают простейшим путем многие задачи производственного контроля и выполняют очень сложные исследования, часто без разложения и paзделения исследуемых веществ на элементы.

Масс-спектрометрические, хроматомасс-спектрометрические и другие методы. Масс-спектрометрия применяется для изотопного анализа, для исследования состава продуктов химических реакций, для определения микропримесей в газах, жидкостях и отчасти твердых веществах. Этот метод широко используется для определения молекулярного состава сложных смесей в химии нефти и химии синтетических продуктов. Масс-спектрометрический анализ может быть полностью автоматизирован.

В нашей стране созданы отечественные масс-спектрометры, предназначенные не только для дистанционного контроля в окружающей среде, но и для автоматического регулирования технологических процессов в химической и других отраслях промышленности промышленности.

Хроматомасс-спектрометрия – самый сложный, но и наиболее сегодня перспективный (и дорогой) аналитический метод. Его относят к группе «гибридных», т.е. сочетающих эффективное разделение (хроматографирование) и высокочувствительное, а также специфичное определение (масс-спектрометрирование) в одном приборе. Именно этим методом сегодня удается с нужной чувствительностью количественно определять и одновременно идентифицировать одну из наиболее токсичных групп органических соединений, носящую обобщенное название – диоксины.

Большой интерес представляет радиоспектроскопический метод анализа, основанный на измерении резонансного поглощения энергии высокочастотных электромагнитных полей. В сущности, этот метод подобен оптическим методам. Но генераторами и приемниками излучения в радиоспектроскопии являются радиотехнические устройства.

Следует также сказать о методах анализа, основанных на использовании магнитных свойств веществ (ЭПР и ЯМР). В одном из таких методов, например, парамагнитные свойства кислорода используются для его определения.

Большое значение приобретают электронографические, рентгенографические, нейтронографические и другие методы.

В настоящее время быстро развиваются кинетические методы, позволяющие по каталитическому ускорению реакций определять 10-8 – 10-9 г рения, вольфрама, серебра и многих других элементов, а также отдельных веществ-катализаторов (или наоборот, ингибиторов – торможению) химических и биохимических реакций.

Назовем примеры областей применения ФХМА.

 




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 1064; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.