КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормальный закон распределения
Нормальный закон распределения и другие виды распределений Нормальный закон[4] распределения во всех естественных науках имеет фундаментальное значение. И в психологических дисциплинах его значение трудно переоценить. Достаточно сказать, что все психологические шкалы основываются на этом законе, поскольку ему следуют распределения большинства человеческих способностей и свойств.
Рис. 14. Кривая нормального распределения
Самой общей характеристикой нормального распределения является простое наблюдение того закономерного факта, что очень большие центральные отклонения (xi–M) встречаются крайне редко, а маленькие часто, при этом одинаковые по модулю отклонения одинаково вероятны. Такая закономерность может иметь место в условиях, когда на случайную величину хi действует большое число разнообразных факторов и доля воздействия каждого из них одинаково мала по сравнению с их числом. Свойства нормального распределения: 1. При всех значениях переменной хi плотность положительна. 2. Плотность симметрична относительно математического ожидания, которое в этой связи нередко называют центром рассеивания (для симметричных распределений). Коэффициент асимметрии равен нулю. 3. При увеличении модуля аргумента кривая сколь угодно близко приближается к оси абсцисс, не достигая ее. 4. Численные значения среднего арифметического, моды и медианы совпадают. 5. Плотность нормального распределения быстро убывает по мере увеличения значений центрированной случайной величины, выраженных в единицах стандартного отклонения. Следует запомнить, что ± σ = 0,683; ± 2σ = 0,954; ± 3σ = 0,997. 6. При значениях – σ и + σ на кривой стандартной плотности на кривой дифференциального распределения) имеются точки смены кривизны (перегиба): на участке (– σ ≤ Х ≤ + σ) функция плотности вогнута вниз, а за его пределами, наоборот, вогнута вверх. Несмотря на то, что теоретически нормальный закон распределения предполагает существование бесконечно малых и бесконечно больших значений любой, следующей ему величины, на практике (тем более в психологии) случайные переменные имеют конечные области существования. Поэтому на практике используются функции нормального распределения, ограниченные слева и справа основными отклонениями: ± 4.
Дата добавления: 2014-12-26; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |