Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Меры изменчивости, или меры рассеивания





Дисперсия(Variance) — — это средний квадрат отклонений всех значений признака от среднего арифметического. Имеет размерность значения признака в квадрате. Находится по следующим формулам:

 

А) при небольшом количестве испытуемых

, где

D — дисперсия

xi — i-тое значение признака x

— среднее арифметическое

i — номер испытуемого в выборке

N — число испытуемых или объем выборки

 

Б) для простого вариационного ряда (для каждого значения признака указана частота его появления в данной выборке)

, где

D — дисперсия

xi — i-тое значение признака x

— среднее арифметическое

m — число значений признака, встретившихся в данной выборке

i — номер значения признака по порядку

fi — абсолютная частота каждого i-того значения признака x

N — число испытуемых или объем выборки

В) для сгруппированного распределения находится приближенное значение дисперсии по следующей формуле

, где

D — дисперсия

xср i — среднее значение каждого i-того интервала

— среднее арифметическое

k — число интервалов в сгруппированном ряду

i — номер интервала по порядку

fi — абсолютная частота каждого i-того интервала

N — число испытуемых или объем выборки

Алгоритм вычисления дисперсии в сгруппированном распределении:

1. Для каждого интервала вычисляем его центральное отклонение по формуле xсрi

2. Каждое центральное отклонение возводится в квадрат: (xсрi )2

3. Находим произведение квадрата центрального отклонения каждого интервала и абсолютной частоты этого интервала (xсрi )2· fi

4. Находим сумму этих произведений ∑(xсрi )2· fi

5. Вычисляем среднее арифметическое значение как частное от деления ∑(xсрi )2· fi на N.

6. Находим дисперсию как частное отделения этой суммы на (N–1).

Для расчетов удобно выполнять каждое действие в отдельном столбце следующей таблицы:

Таблица 8

  № п/п Xi (начало и конец интервалов)   fi   Fi   Xср i        
               
               
               
               
               
               
               
               
    S=N     S=……     S=………

Стандартное отклонение(или среднеквадратическое отклонение) (Std. deviation) — — это среднее отклонение каждого значения признака от среднего арифметического. Имеет ту же размерность, что и сам признак. Находится по формуле: , где D — дисперсия



Или, если в эту формулу подставить формулу дисперсии, то по следующим формулам:

А) при небольшом количестве испытуемых

, где

s — стандартное отклонение

xi — i-тое значение признака x

— среднее арифметическое

i — номер испытуемого в выборке

N — число испытуемых или объем выборки

 

Б) для простого вариационного ряда (для каждого значения признака указана частота его появления в данной выборке)

, где

s — стандартное отклонение

xi — i-тое значение признака x

— среднее арифметическое

m — число значений признака, встретившихся в данной выборке

i — номер значения признака по порядку

fi — абсолютная частота каждого i-того значения признака x

N — число испытуемых или объем выборки

В) для сгруппированного распределения находится приближенное значение дисперсии по следующей формуле

, где

s — стандартное отклонение

xср i — среднее значение каждого i-того интервала

— среднее арифметическое

k — число интервалов в сгруппированном ряду

i — номер интервала по порядку

fi — абсолютная частота каждого i-того интервала

N — число испытуемых или объем выборки

Коэффициент асимметрии(Skewness) — As — параметр, характеризующий асимметричность распределения по сравнению с нормальным распределением. У симметричного распределения As=0.

При левосторонней асимметрии график сдвигается ближе к оси ординат, т. е. чаще встречаются более низкие значения признака. Коэффициент асимметрии в этом случае бывает положительным.

При правосторонней асимметрии график отодвигается от оси ординат, т. е. чаще встречаются более высокие значения признака. Коэффициент асимметрии в этом случае меньше нуля, отрицательный.


 

Рис.12. Распределения частот с разными значениями асимметрии

 

Коэффициент асимметрии находится по следующей формуле:

, где

As— коэффициент асимметрии

xi — i-тое значение признака x

— среднее арифметическое

N — число испытуемых или объем выборки

s — стандартное отклонение

Коэффициент эксцесса(Kurtosis) — Ex— параметр, характеризующий выпуклость распределения по сравнению с нормальным распределением. В распределениях с нормальной выпуклостью Ex=0.

В тех случаях, когда в выборке встречается много средних или близких к средним значений, распределение имеет вид островершинной кривой. Коэффициент эксцесса в этом случае положительный, т. е. больше нуля.

Если же в распределении преобладают крайние значения, причем одновременно и более низкие, и более высокие, то такое распределение имеет вид низкой, плосковершинной кривой, или иногда низкой кривой с двумя вершинами. Коэффициент эксцесса — отрицательный.

Рис.13. Распределения частот с разными значениями эксцесса

 

Коэффициент эксцесса находится по следующей формуле

, где

Ex— коэффициент эксцесса

xi — i-тое значение признака x

— среднее арифметическое

N — число испытуемых или объем выборки

s — стандартное отклонение

Коэффициент вариацииили коэффициент вариативности— V — параметр, показывающий соотношение стандартного отклонения и среднего арифметического. Применяется для сравнения изменчивости распределений признаков, имеющих разную размерность, то есть сам коэффициент вариации является безразмерной мерой рассеивания.

Находится по формуле:

, где

V — коэффициент вариации

s — стандартное отклонение

— среднее арифметическое

 

Коэффициент вариации позволяет сравнивать изменчивость признаков, измеренных по разным шкалам, а также оценивать однородность выборки (для однородных выборок он должен быть не более 30%).

 





Дата добавления: 2014-12-26; Просмотров: 329; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.007 сек.