Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механические модели неньютоновских сред




Горные породы - это тела с бесконечным многообразием реологических свойств, поэтому для описания их поведения могут быть использованы те или иные механические модели. При составлении модели нужно учитывать механические свойства минеральных агрегатов, составляющих породу, её структурные особенности, а также тип и характер цементирующего вещества. Горные породы и вязкоупругие жидкости могут быть представлены в виде некоторых комбинаций двух идеальных тел - вязкого (Ньютона «N») и упругого (Гука «Н»). Качественное описание реологического поведения подобных тел дают механические модели, в которых упругие свойства представлены пружиной, а вязкие - поршнем, движущемся в цилиндре, наполненном маслом (рис.8.4).

Рис. 8.4. Механические модели вязкоупругих сред: а - тело Гука (упругое); б - тело Ньютона (вязкая жидкость); в-тело Максвелла (вязкоупругое); г- тело Фойгхта (вязкоупругое)

1. Простейшая механическая модель вязкоупругой жидкости может быть получена последовательным соединением пружины и поршня (рис.8.3,в). Она представляет собой, так называемую максвелловскую жидкость (J. Maxwell, 1868).

Поскольку при последовательном соединении

 

t1 = t2 = t, g = g1 + g2,

где t1 и t2 - силы (напряжения), действующие на пружину и поршень, g - деформация всей системы, то с учётом соотношений

t1 = Gg1,

 

получим

 

или

, (8.2.4)

где .

Если тело Максвелла подвергается при t ³ 0 деформации с постоянной скоростью , то из (8.2.4) с учётом начального условия t (0) = 0 легко получить

 

.

 

Отсюда следует, что при напряжение по экспоненциальному закону стремится к равновесному значению . Величина l имеет смысл характерного времени переходного процесса и называется временем релаксации. Таким образом, реологические характеристики вязкоупругих жидкостей зависят от времени.

2. Механическая модель твёрдого тела, обладающего вязкостью (тело Кельвина), может быть получена параллельным соединением пружины и поршня(рис.8.4, г). Для этой схемы g = g1 = g2, t1 + t2 = t,

поэтому имеем

 

, или

 

. (8.2.5)

 

Реологическая модель типа (8.2.5) рассматривалась также Фойхтом (Voigt,1890), поэтому модель рис. 8.4,г часто называется телом Кельвина-Фойгхта. Простые модели Максвелла и Кельвина - Фойгхта не всегда оказываются достаточными для описания реальных вязкоупругих материалов.

Связано это со структурой реофизически сложных сред, в которых, например, вместо одной релаксации существует целый спектр релаксаций, характеризующих различные нестационарные процессы.

В этой связи часто рассматриваются обобщённые модели, составленные из многих последовательных соединений пружин и поршней (рис. 8.5, 8.6).

 

Рис. 8.5. Обобщённые механические модели: а - тело Олдройда; б - обобщённое тело Максвелла

Пример. Вывести реологическое уравнение, соответствующее механической модели, изображённой на рис. 8.5,а. В этом случае имеем

t = t0 = t1 + t2,

g = g0 + g1,

где

силы (напряжения), действующие на поршни m0, m1 и пружину G соответственно.

Отсюда

 

, или

 

, (8.2.6)

 

где - времена релаксации.

 

Модель (8.2.6) была получена Олдройдом (J.G. Oldroyd, 1953) при теоретическом рассмотрении реологических свойств эмульсий и суспензий.

Применение более сложных моделей приводит к реологическим уравнениям вида

 

, где .

Для отдельных типов песчанистых глин хорошо подходит модель Кельвина-Фойгхта. Тело Гука моделирует упругие свойства песчинок, а тело Ньютона - вязкие свойства собственно глинистой фракции. Свойства глин Подмосковья хорошо описываются при сжатии моделью Кельвина - Максвелла

 

.

Так как после непродолжительного времени ползучести этих глин наступает условие кривую на графике e-t можно аппроксимировать прямой, и поведение глины моделировать, используя модель Максвелла.

Рис. 8.6. Обобщённые механические модели: в - обобщённое тело Максвелла; г - обобщённое тело Кельвина - Фойгхта

Выбор модели в большой степени зависит от характера размещения цементирующего вещества в породе, от того, является ли тип цемента контактным или базальным. Для приближённого и частичного описания реологических свойств тех или иных типов пород могут быть использованы среды Бюргерса (Bu), Пойтинга-Томсона (PTh), Шведова (Schw) и их комбинации. Однако полностью поведение горных пород не моделирует ни одна подобная модель.

Анализируя кривые деформирования и ползучести горных пород, можно сделать заключение о ряде следующих свойств, которые должны быть присущи модели:

· при мгновенном приложении нагрузки происходит соответственная мгновенная деформация;

· при постоянном напряжении деформация увеличивается со временем. Величина деформации асимптотически стремится к определённому пределу, который зависит от интенсивности действующих напряжений;

· предел, к которому стремится деформация, нелинейно зависит от действующих напряжений;

· до определённой величины напряжений (предела упругости) происходит упругое деформирование тела. После превышения величины критических напряжений начинается пластически вязкое деформирование;

· рост вязкопластических деформаций сопровождается одновременным ростом упругих деформаций.




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 563; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.