КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формулы фильтрации
Закон Дарси. При очень медленном движении жидкости в пористой среде (пласте), когда силы инерции ничтожно малы и ими можно пренебречь, для скорости фильтрации принят так называемый линейный закон фильтрации, или закон Дарси: , (9.3.1) где DH/ l - потеря напора на единицу длины пласта (соответствует гидравлическому уклону i). Коэффициент пропорциональности К в формуле (2.36) называется коэффициентом фильтрации. Он характеризует одновременно фильтрационную способность среды и протекающей в нём жидкости. [К] = [см/с]. Закон Дарси можно выразить через коэффициент проницаемости k, характеризующий пористую среду, и динамический коэффициент вязкости m жидкости: , (9.3.2) g - удельный вес жидкости. Расход жидкости Q, протекающий через площадь фильтрации f, определяется формулой: . (9.3.3) Закон Дарси в дифференциальной форме
, (9.3.4) где s - направление, которое берётся вдоль струйки по скорости v. Для коэффициента проницаемости имеем (9.3.5) [k] = см2. 1 дарси = . Коэффициент проницаемости равен 1 дарси при абсолютной вязкости m = 1 сантипуазу, Dр =1 ат на длине 1 см, площади сечения 1 см2 и расходе жидкости 1 см3/с. При движении жидкости в крупнозернистых грунтах закон ламинарной фильтрации нарушается в связи с турбулентным характером течения. Такое нарушение может происходить и при ламинарном движении за счёт сравнительно высоких скоростей течения, при которых нельзя пренебрегать влиянием сил инерции. Критерием существования ламинарной фильтрации является число Рейнольдса. · По Н.Н. Павловскому . При этом 7< Reкр < 9. · По В.Н. Щелкачёву , 1< Reкр < 12. · М.Д. Миллионщиков ввёл в формулу Рейнольдса внутренний масштаб породы (линейный размер ) l*: , где k - коэффициент проницаемости, m - пористость; за характерную скорость принимается истинная скорость фильтрации, равная . Тогда
. (9.3.6)
Критическое значение 0.022 < Reкр< 0.290. Если фильтрация не подчиняется закону Дарси (нелинейна), то используют следующие представления: · скорость w или дебит Q представляются степенной зависимостью от градиента давления
, (9.3.7)
где C и n некоторые коэффициенты; · двучленной формулой для градиента давления вида , (9.3.8) где - dS - элемент струйки, b - коэффициент, зависящий от геометрии пористой среды, шероховатости и т.п. Скорости фильтрации струек пропорциональны расходам (дебитам), поэтому двучленный закон сопротивления при нелинейной фильтрации может быть представлен уравнением индикаторной кривой для несжимаемой жидкости в виде , (9.3.9) графически изображаемой параболой. Для газа (воздуха) будем иметь , где А1 и В1 - параметры, характерные для данного пласта и скважины. Ø Л.С. Лейбензон, исходя из общей теории фильтрации, предложил определять скорость фильтрации по формуле: ; здесь n - кинематический коэффициент вязкости, J - гидравлический уклон, k - проницаемость, B1 - постоянная величина. При квадратичной турбулентной фильтрации показатель степени S = 2. Движение газа в пористой среде. Общее уравнение установившегося движения газа через пористую среду имеет вид , (9.3.10) где q - функция давления, Уравнения движения газов в пористой среде нелинейны и решить их можно только в некоторых конкретных случаях при введении определённых упрощений. Рассмотрим несколько частных решений, представляющих интерес с позиций проводки нефтяных и газовых скважин и широко используемых в различных расчётах при бурении. Пусть при бурении скважины радиусом rс частично (рис. 9.1,б) или полностью (в) вскрыт проницаемый пласт кругового контура радиусом Rk, имеющий непроницаемые кровлю, подошву и толщину h (рис.9.1).
В случае применимости закона Дарси для несжимаемой жидкости справедливы следующие формулы для расчёта расхода при стационарной фильтрации. При большой мощности пласта (рис.9.1,а) имеем формулу для расчёта расхода на стенках скважины:
, или , т.к. . (9.3.11)
При этом для рk > рс скважина проявляет с дебитом Q, а в противном случае поглощает. При условии rс << h и незначительном заглублении (рис.9.1, б) формула для расчёта с удовлетворительной для инженерных расчётов точностью имеет вид (9.3.12) Аналогично при рk > рс имеет место проявление с дебитом Q, а в противном случае поглощение. Наконец, (рис.9.1, в) расход определяется по формуле Дюпюи: (9.3.13) при тех же условиях. Во всех приведённых формулах индексы «с» и «k» означают скважину и контур, а под давлением рk понимается пластовое давление. Обычно крайне трудно задаваться радиусом контура Rk. Если при его задании ошибиться в m раз, то При условии, что Rk обычно в сотни или тысячи раз больше h или rс, первые члены будут на порядок больше вторых членов при m = 2÷3. Поэтому погрешности от ошибочного задания радиуса контура в 2-3 раза приводят к ошибкам порядка 10%. Т.е. двух и трёхкратные ошибки при задании Rk вполне допустимы. Приведённые выше формулы применены при фильтрации по закону Дарси, а во многих случаях вскрываются трещинные и порово-трещинные коллекторы, для которых справедливы законы течения, описываемые формулами Форхгеймера или Краснопольского - Шези. В случае применимости закона Краснопольского - Шези формула для расчёта расхода имеет вид , (9.3.14) где а - постоянная характеристика фильтрации. Принимая во внимание, что rk >> rс, последнюю формулу можно записать в виде (9.3.15) При фильтрации по закону Форхгеймера расчётная формула для определения Q приближённо записывается в виде (9.3.16) где b - постоянная двухчленного закона фильтрации. Все приведённые выше формулы могут использоваться и для течения газов. В этом случае вместо разности давлений необходимо применять разность квадратов давлений, т.е. а вместо объёмного расхода Q определяется приведённый к стандартным условиям (например, к пластовой температуре и атмосферному давлению) объёмный расход Qприв. Так, формула Дюпюи при течении газов имеет вид (9.3.17) а для случая одномерного течения соответствующая формула была приведена выше, где в отличие от формулы для жидкости появился множитель (где рат - атмосферное давление).
Дата добавления: 2014-12-26; Просмотров: 9207; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |