КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормальный закон распределения 3 страница
Наработка на отказ Среднее время восстановления По формуле (6.32) по вычисленным значениям 7о и 7в находим коэффициент готовности системы: #г=62,8/(62,8+2,9)=0,95 6.3. Показатели надежности системы, состоящей из независимых элементов Всякая система характеризуется безотказностью и ремонтопригодностью. В качестве основной характеристики безотказности системы служит функция надежности, которая представляет собой вероятность безотказной работы в течение некоторого времени t. Пусть система состоит из n элементов, функции надежности которых обозначим через p1(t), p2(t),.. pn(t). Так как элементы, входящие в состав системы, являются независимыми, то вероятность безотказной работы системы определяется как произведение вероятностей составляющих ее элементов Р(0 = P1(t)P2(t)...pn(t). (6.34) В частном случае, когда функции надежности составляющих элементов имеют экспоненциальное распределение с постоянными интенсивностями отказов, функция надежности системы определяется по формуле (6.35) Одной из важнейших характеристик безотказности системы является среднее время жизни, которое вычисляют, используя выражение (6.36) Для случая экспоненциального распределения среднее время жизни системы равно (6.37) Среднее время жизни системы или наработку на отказ по результатам статистических данных вычисляют по формуле Тс = 7/m, (6.38) где Т — суммарная наработка системы, полученная по результатам испытаний или эксплуатации; т — суммарное число отказов, зафиксированное в процессе испытаний или эксплуатации. Коэффициент оперативной готовности характеризует надежность системы, необходимость применения которой возникает в произвольный момент времени (кроме планируемых периодов, в течение которых применение системы по назначению не предусматривается), начиная с которого система будет работать безотказно в течение заданного времени t. Значение коэффициента оперативной готовности определяют из выражения Ко = К P(t) = F(t) Tc/(Tc +Тв). (6.39) Пример 6.6. Определить коэффициент оперативной готовности системы за период времени t = 10 ч, если известно, что система состоит из пяти элементов с соответствующими интенсивностями отказов, ч-1: Х1 = 210-5; Х2 = 510-5; Х3 = 10-5; Х4 = 2010-5; Х5 = 5010-5, а среднее время восстановления при отказе одного элемента равно Тв = 10 ч. Результатами испытаний установлено, что распределение наработки на отказ подчиняется экспоненциальному закону. Решение. Вероятность безотказной работы определим по формуле (6.35): Р(0 = ехр[-£)ц t] ~ 1 - ()ц+Х2+Ъ+Х4+Х5)10-5 t = =1- (2+5+1+20+50)10-5.10 = 0,992. Значение Tc определяем по формуле (6.37) Тс = 1/(^1 + ^2 + X? + >ч + А*) = 105/78 = 1282 ч. Используя формулу (6.39), вычислим коэффициент оперативной готовности Ko = P(t)Tc/(Tc + Тв) = 0,992 1282/(1282 + 10) = 0,984. Ответ: Ko = 0,984. Пример 6.7. При эксплуатации в течении одного года (Тэ = 1 год = 8760 ч.) изделий специального назначения было зафиксировано пять отказов (m = 5). На восстановление каждого отказа в среднем затрачено двадцать часов (Тв = 20 ч.). За указанный период эксплуатации был проведен один регламент (техническое обслуживание). Время регламента составило десять суток (Тр = 240 ч.). Определить коэффициенты: готовности (Кг) и технического использования (Ки). Решение. Коэффициент готовности определим по формуле Кг = 1 - (m Тв/Тэ) = 1 - (520/8760) = 0,9886. Коэффициент технического использования равен: Ки = 1 - (m Тв + Тр)/Тэ = 1 - (520 + 240)/8760 = 0,9612. Ответ: Кг= 0,9886; Ки = 0,9612. 6.4. Выбор и обоснование показателей надежности технических систем Одной из важнейших задач на этапе проектирования является правильный выбор номенклатуры нормируемых показателей надежности. Необоснованный выбор показателей надежности из широкой номенклатуры имеющихся показателей может привести к неправильным решениям при проектировании системы. Поэтому при выборе показателей надежности необходимо учитывать назначение системы, условия и режимы ее работы, а также ее ремонтопригодность. Информация о назначении системы дает возможность определить область и интенсивность применения системы по назначению. Сведения об условиях и режимах работы системы используют для оценки влияния факторов окружающей среды на работоспособность проектируемой системы, а также влияния действующих внешних и внутренних нагрузок на несущую способность элементов системы. Количественные значения этих оценок являются исходными данными для расчета прочности и устойчивости элементов и узлов металлоконструкций. Если по условиям применения систему предполагается ремонтировать в условиях эксплуатации, то в качестве одного из основных показателей надежности следует выбирать коэффициент готовности Кг или коэффициент технического использования Ки. В случае, если отказ системы или отдельных ее элементов приводит к невыполнению важной задачи или нарушает безопасность работы обслуживающего персонала, а также вызывает угрозу для здоровья и жизни людей, находящихся в зоне действия системы, то для таких систем основным показателем надежности является безотказность, выражающаяся в виде наработки на отказ или вероятности безотказной работы. Если в результате простоя системы после отказа возникают большие материальные затраты, то такая система должна иметь хорошую ремонтопригодность и высокие показатели безотказности. Если система по условиям эксплуатации подлежит длительному хранению (ожиданию работы) или она должна транспортироваться на специальных транспортных средствах, то такая система должна обладать высокими показателями сохраняемое™ в соответствующих условиях хранения и транспортирования. Все показатели надежности проектируемой системы должны обеспечивать нормальное ее функционирование в течение заданного срока эксплуатации. 6.5. Распределение нормируемых показателей надежности Распределение норм надежности проводят на этапах эскизного и рабочего проектирования технической системы. Предполагается, что на любом из этих этапов конструирования систему можно разбить на некоторое число подсистем в виде отдельных сборочных единиц и исходить из начальной надежности каждой подсистемы, полученной расчетом или по результатам испытаний подсистем. Пустьр1,р2,...,рп означают надежность подсистем. Предположим, что отказ любой подсистемы приводит к отказу системы в целом, тогда надежность системы на основании теоремы умножения вероятностей имеет вид: P = Р1 P2..-Pn. (6.40) Пусть Ртр - требуемая надежность системы, причем значение надежности должно удовлетворять условию Ртр > Р. Задача состоит в том, чтобы повысить хотя бы одно из значений на столько, чтобы Р > Ртр. Для повышения надежности необходимо произвести до полни-тельные затраты, связанные либо с введением резервирования в этой системе, либо с введением в систему более надежных элементов. Методика повышения надежности Р до требуемого значения Ртр сводится к следующему. Надежности р1, р2,..., рп располагают в неубывающей последовательности: Р1 < Р2 <...< Рп. (6.41) Каждую из надежностей р1, р2,..., рк увеличивают до одного и того же значения р0тр, а надежности, начиная с рк+1,..., рп, остаются неизменяемыми. Номер к выбирают из максимального значения j, для которого (6.42) j=1 где рп+1 =1 по определению. Значение р0тр определяют из соотношения (6.43) Очевидно, что надежность системы после определения р0тр будет удовлетворять заданному требованию, поскольку новая надежность равна: ххример о.о. пусть техническая система состоит из трех подсистем, падежнисть каждой из них соответственно равна: p1 =0,7; р2 =0,8; р3 =0,9. Известно, что отказ любой одной подсистемы приводит к отказу системы в целом. Требуемое значение надежности системы равно =0,65. Провести перераспределение норм надежности таким образом, чтобы произведение вероятностей трех подсистем соответствовало заданному требованию. Решение. Используя формулу (6.40), получим: P = Р1 р2 р3 =0,70,80,9 = 0.504. Предположим, что мы не рассчитываем k по формуле (6.42), а произвольно задаем k =1. Тогда, подставляя исходные данные в формулу (6.43), получим: Р0тр = [0,65/0,80,91,0]1/1 = 0.903. P = 0,9030,80,9 = 0.65. Полученное значение надежности соответствует требуемому Ртр =0,65. Однако на основании полученного значения р0тр можно заключить, что распределение средств, необходимых для повышения надежности, не было оптимальным. Другими словами, приложено больше средств для достижения заданного показателя, чем требовалось. Определим теперь к по формуле (6.42). С этой целью вычислим три величины: Г1 = [Р^/Р2 Р3.1,0]1/1 = [0,65/0,80,91,0]1/1 = 0,903; Г2 = [Ртр/р3.1,0]1/2 = [0,65/0,9-1,0]1/2 = 0,85; Г3 = [Ртр/1,0]1/3 = [0,65/1,0]1/3 = 0,866. Так как p1<r1, p2<r2, р3 >r3, примем к =2. В этом случае наибольшее значение индекса j со свойством p<r, равно двум. Далее, учитывая выражение (6.43), находим р0тр = [0,65/0,9]1/2 = 0,85. Это означает, что средства на повышение надежности необходимо распределить следующим образом: надежность подсистемы №1 увеличивают с 0,7 до 0,85; надежность подсистемы №2 - с 0,8 до 0,85; надежность подсистемы №3 оставляют на прежнем уровне. В результате вероятность безотказной работы всей системы: Р = (0,85)20,90 = 0,65. 7. Расчет показателей надежности технических систем 7.1. Структурные модели надежности сложных систем Большинство технических систем являются сложными системами, состоящими из отдельных узлов, деталей, агрегатов, систем управления и т.п. Под сложной системой понимается объект, предназначенный для выполнения заданных функций, который может быть расчленен на элементы (компоненты), каждый из которых также выполняет определенные функции и находится во взаимодействии с другими элементами системы. С позиций надежности сложная система обладает как отрицательными, так и положительными свойствами. Факторы, отрицательно влияющие на надежность сложных систем, следующие: - во-первых, это большое число элементов, отказ каждого из которых может привести к отказу всей системы; - во-вторых, оценить работоспособность сложных систем весьма затруднительно с точки зрения статистических данных, т.к. они часто являются уникальными или имеются в небольших количествах; - в-третьих, даже у систем одинакового предназначения каждый экземпляр имеет свои незначительные вариации свойств отдельных элементов, что сказывается на выходных параметрах системы. Чем сложнее система, тем большими индивидуальными особенностями она обладает. Однако сложные системы обладают и такими свойствами, которые положительно влияют на их надежность: - во-первых, сложным системам свойственна самоорганизация, саморегулирование или самоприспособление, когда система способна найти наиболее устойчивое для своего функционирования состояние; - во-вторых, для сложной системы часто возможно восстановление работоспособности по частям, без прекращения ее функционирования; - в-третьих, не все элементы системы одинаково влияют на надежность сложной системы. Анализ работоспособности сложной системы связан с изучением ее структуры и тех взаимосвязей, которые определяют ее надежное функционирование. При анализе надежности сложных систем их разбивают на элементы (компоненты) с тем, чтобы вначале рассмотреть параметры и характеристики элементов, а затем оценить работоспособность всей системы. Под элементом можно понимать составную часть сложной системы, которая может характеризоваться самостоятельными входными и выходными параметрами. При исследовании надежности системы элемент не расчленяется на составные части, и показатели безотказности и долговечности относятся к элементу в целом. При этом возможно восстановление работоспособности элемента независимо от других частей и элементов системы. Анализ надежности сложных систем имеет свои специфические особенности. Влияние различных отказов и снижение работоспособности элементов системы по-разному скажутся на надежности всей системы. При анализе надежности сложной системы все ее элементы и компоненты целесообразно разделить на следующие группы. 1) Элементы, отказ которых практически не влияет на работоспособность системы (деформация ограждающего кожуха машины, изменение окраски поверхности и т. п.). Отказы (т. е. неисправное состояние) этих элементов могут рассматриваться изолированно от системы. 2) Элементы, работоспособность которых за рассматриваемый период времени практически не изменяется (станины и корпусные детали, малонагруженные элементы с большим запасом прочности). 3) Элементы, ремонт или регулировка которых возможна при работе изделия или во время остановок, не влияющих на его эффективность (подналадка и замена режущего инструмента на станке, регулировка холостого хода карбюратора автомобильного двигателя). 4) Элементы, отказ которых приводит к отказам системы. Таким образом, рассмотрению и анализу надежности подлежат лишь элементы последней группы. Как правило, имеется ограниченное число элементов, которые в основном и определяют надежность изделия. Эти элементы и подсистемы выявляются при рассмотрении структурной схемы параметрической надежности. Модели надежности устанавливают связь между подсистемами (или элементами системы) и их влиянием на работу всей системы. Структурная схема надежности определяет функциональную взаимосвязь между работой подсистем (или элементов) в определенной последовательности. Эту схему составляют по принципу функционального назначения соответствующих подсистем (или элементов) при выполнении ими определенной части работы, выполняемой системой в целом. Техническая система может быть сконструирована таким образом, что для успешного ее функционирования необходима исправная работа всех ее элементов. В этом случае ее называют последовательной системой. Есть также системы, в которых при отказе одного элемента другой элемент способен выполнить его функции. Такую систему называют параллельной. Очень часто системы обладают свойствами как параллельных, так и последовательных систем — системы со смешанным соединением. При расчете надежности необходимо исследовать действия системы, основываясь на ее функциональной структуре и используя вероятностные соотношения. Такое исследование структуры позволяет выявить узкие места в конструкции системы с точки зрения ее надежности, а на этапе проектирования разработать конструктивные меры по устранению подобных узких мест. Например, можно заранее подсчитать, сколько резервных элементов необходимо для обеспечения заданного уровня надежности системы. Далее можно рассчитать надежность системы, построенной из элементов с известной надежностью, или наоборот, исходя из требования к надежности системы, предъявить требования к надежности элементов. 7.2. Структурная схема надежности системы с последовательным соединением элементов Имеются структурные схемы надежности системы с последовательным соединением элементов (рис. 6.1), когда отказ одного элемента вызывает отказ другого элемента, а затем третьего и т. д. Например, большинство приводов машин и механизмы передач подчиняются этому условию. Так, если в приводе машины выйдет из строя любая шестерня, подшипник, муфта, рычаг управления, электродвигатель, насос смазки, то весь привод перестанет функционировать. При этом отдельные элементы в этом приводе не обязательно должны быть соединены последовательно. Такую структурную схему называют схемой с последовательным соединением зависимых элементов. В этом случае надежность системы определяют по теореме умножения для зависимых событий. Рассмотрим систему, состоящую из двух или более элементов. Пусть А — событие, состоящее в том, что система работает безотказно. a Ai (i=l, 2,..., п) — события, состоящие в исправной работе всех ее элементов. Далее предположим, что событие А имеет место тогда и только тогда, когда имеют место все события Ai, т.е. система исправна тогда и только тогда, когда исправны все ее элементы. В этом случае систему называют последовательной системой. Рис.7.1. Структурная схема надежности системы с последовательным соединением элементов Известно, что отказ любого элемента такой системы приводят, как правило, к отказу системы. Поэтому вероятность безотказной работы системы определяют как произведение вероятностей для независимых событий. Таким образом, надежность всей системы равна произведению надежностей подсистем или элементов: (7.1) Обозначив Р(А) = Р; Р(Аг) = pi, получим (7.2) где Р — надежность. Сложные системы, состоящие из элементов высокой надежности, могут обладать низкой надежностью за счет наличия большого числа элементов. Например, если узел состоит всего из 50 деталей, а вероятность безотказной работы каждой детали за выбранный промежуток времени составляет Pi = 0, 99, то вероятность безотказной работы узла будет P(t) = (0,99)50 = 0,55. Если же узел с аналогичной безотказностью элементов состоит из 400 деталей, то P(t) = (0,99)400 = 0,018, т.е. узел становится практически неработоспособным. Пример 7.1. Определить надежность автомобиля (системы) при движении на заданное расстояние, если известны надежности следующих подсистем: системы зажигания p1 = 0,99; системы питания топливом и смазкой p2 = 0,999; системы охлаждения p3 = 0,998; двигателя р4 = 0,985; ходовой части р5 = 0,997. Решение. Известно, что отказ любой подсистемы приводит к отказу автомобиля. Для определения надежности автомобиля используем формулу (7.2) Р = Р1Р2 Р3 Р4 P5 = 0,990,9990,9980,9850,997 = 0,979. Ответ: Р = 0,979. 7.3. Структурные схемы надежности систем с параллельным соединением элементов В практике проектирования сложных технических систем часто используют схемы с параллельным соединением элементов (рис. 7.2.), которые построены таким образом, что отказ системы возможен лишь в случае, когда отказывают все ее элементы, т.е. система исправна, если исправен хотя бы один ее элемент. Такое соединение часто называют резервированием. В большинстве случаев резервирование оправдывает себя, несмотря на увеличение стоимости. Наиболее выгодным является резервирование отдельных элементов, которые непосредственно влияют на выполнение основной работы. При конструировании технических систем в зависимости от выполняемой системой задачи применяют горячее или холодное резервирование. Горячее резервирование применяют тогда, когда не допускается перерыв в работе на переключение отказавшего элемента на резервный с целью выполнения задачи в установленное время. Чаще всего горячему резервированию подвергают отдельные элементы. Используют горячее резервирование элементов и подсистем, например источников питания (аккумуляторные батареи дублируются генератором и т.п.). Холодное резервирование используют в тех случаях, когда необходимо увеличение ресурса работы элемента, и поэтому предусматривают время на переключение отказавшего элемента на резервный. Существуют технические системы с частично параллельным резервированием, т. е. системы, которые оказываются работоспособными даже в случае отказа нескольких элементов. Рис. 7.2. Структурная схема надежности системы с параллельным соединением элементов Рассмотрим систему, имеющую ряд параллельных элементов с надежностью p(t) и соответственно ненадежностью q(t) = 1- p(t). В случае, если система содержит п элементов, которые соединены параллельно, вероятность отказа системы равна: Q = [q(t)]n, (7.3) а вероятность безотказной работы P(t) = 1- [q(t)]n. (7.4) При частично параллельном резервировании вероятность безотказной работы системы, состоящей из общего числа элементов n, определяют по формуле: (7.5) где p(t) — вероятность безотказной работы одного элемента; j — число исправных элементов, при котором обеспечивается работоспособность системы; Спк = n!/[k!(n - k)!] - число сочетаний из n элементов по k. В случае j =1 система будет полностью параллельной, в остальных случаях - частично параллельной. 7.4. Структурные схемы надежности систем с другими видами соединения элементов Следует отметить, что в практике проектирования технических систем часто используют структурные схемы надежности с параллельно-последовательным соединением элементов. Так, например, часто при проектировании систем с радиоэлектронными элементами применяют схемы, работающие по принципу два из трех, когда работоспособность обеспечивается благодаря исправному состоянию любых двух элементов. Надежность такой схемы соединения определяют по формуле P(t) = p3(t) +3p2(t)q(t). (7.6) где p(t) — надежность каждого элемента за время работы t одинакова; q(t)=1- p(t). Широкое применение в проектировании нашли так называемые мостиковые схемы. Надежность такой схемы определяют из соотношения вида P(t) = p5(t) + 5p4(t) q(t) + 8p3(t) q2(t) + 2p2(t) q3(t). (7.7) Здесь все элементы также имеют одинаковую надежность. Различают структурные схемы надежности с поканальным и поэлементным резервированием. Структурная схема надежности с поканальным резервированием показана на рис. 6.3. Рис. 7.3. Структурная схема надежности с поканальным резервированием Формула надежности выглядит так: P = pn pri'p1n)(1-p21p22..p2n)(1-pk1pk2.pnk)] (7.8) При Pi j=Pj P = ppfpnf (7.9) Если pij = р, то P = l- (l - pn)k (7.10) В практике проектирования часто используют структурную схему надежности с поэлементным резервированием (рис. 6.4). Рис. 7.5. Структурная схема надежности технической системы Решение. При расчете надежности воспользуемся формулами как для последовательного, так и для параллельного соединения элементов: Р = PlP2[l- (l-P3P4)(l-P5P6)][l" (l-P7)(l-P8)(l-P9)] = Рис.7.4. Структурная схема надежности с поэлементным резервированием Надежность такой системы определяют по формуле: P = [1 - (1-рц)(1 - P21)...(l - Pk1)][l - (1 - P12)(1-P22)...(l - P*2)]^...[1- (1-Pm)(1-P2n)...(1-Pkn)]. (7.11) P = [1 - (1 - P1)k][1- (1 - P2)k]-[1- (1 - Pn)k]. (7.12) Если = P, то P = [1 - (1 - P)k]n. (7.13) Анализ последних двух схем показывает, что структурная схема с поэлементным резервированием имеет более высокую надежность по сравнению с поканальным резервированием. Пример 7.2. Техническая система предназначена для выполнения некоторой задачи. С целью обеспечения работоспособности система спроектирована со смешанным соединением элементов (рис. 7.5.). Определить надежность системы, если известно, что надежность ее элементов равна: P1=0,99; P2=0,98; P3=0,9; P4=0,95; P5=0,9; P6=0,9; P7=0,8; P8=0,75; P9=0,7. P1= 0,990,98[1- (1- 0,90,95)(1- 0,90,9)][1- (1- 0,8)(1- 0,75)(1- 0,7)] = 0,927. При расчете схемной надежности данную систему представляют в виде структурной схемы, в которой элементы, отказ которых приводит к отказу всей системы, изображаются последовательно, а резервные элементы или цепи - параллельно. Следует иметь в виду, что конструктивное оформление элементов, их последовательное или параллельное соединение в конструкции еще не означает аналогичного изображения в структурной схеме надежности. Разницу между конструктивной (монтажной) и структурной схемами можно показать на примере работы двух фильтров гидросистемы, которые для повышения надежности работы системы могут быть установлены (рис.7.6) последовательно или параллельно. Отказ фильтра может произойти в результате двух основных причин - засорения сетки и ее разрыва. В случае засорения сетки структурная схема надежности соответствует конструктивной. Последовательное соединение фильтров в этом случае только снизит надежность системы, так как отказ любого из фильтров приведет к отказу системы, поскольку необходимый поток жидкости не будет проходить сквозь фильтр.
Рис.7.6. Конструктивные и структурные схемы надежности соединения фильтров при различных видах отказов При отказе фильтра из-за разрыва сетки структурная схема надежности противоположна конструктивной. При параллельном конструктивном выполнении отказ любого фильтра будет означать отказ системы, так как при разрыве сетки поток жидкости пойдет через данный фильтр и не будет происходить ее фильтрация. Поэтому структурная схема надежности изображена в виде последовательных элементов. При последовательном конструктивном включении фильтров, наоборот, разрыв сетки одного из них не будет означать отказа, поскольку дублирующий фильтр продолжает выполнять свои функции. Поэтому структурная схема надежности изображена в виде параллельного соединения. 7.5. Зависимости для расчета вероятности безотказной работы по заданному критерию Работоспособность механических узлов и металлоконструкций характеризуется рядом критериев (параметров) — прочностью, износостойкостью, жесткостью, устойчивостью, точностью и др. Расчет надежности основывается на сравнении расчетного значения заданного критерия с его предельным значением, выбираемым по нормативным или справочным данным или устанавливаемым при испытаниях или наблюдениях в эксплуатации. Работоспособность деталей или узлов оценивают по заданному критерию, если расчетное его значение Y меньше предельного Уп. В общем случае значение Y не должно превышать предельного значения. Таким образом, для обеспечения работоспособности заранее задают коэффициент безопасности n = YJY. Расчетные параметры рассматривают как детерминированные величины, хотя в действительности они имеют рассеяние. Поэтому расчет проводят по наиболее неблагоприятным значениям параметров, при этом истинное значение коэффициента безопасности остается неизвестным. С переходом на вероятностные методы расчета параметры Y и YIl рассматривают как случайные величины, и вероятность безотказной работы Р по заданному критерию определяют по табл. П.1 приложения в зависимости от квантили: up = (ГпХр - Гср)/(ап2 + Qy2)1/2 (7.14) где up — квантиль нормированного нормального распределения; Yq, и Y^q, - средние значения величин Y и Yu; <сп и aY - средние квадратические отклонения величин Yu и Y.
Дата добавления: 2014-12-26; Просмотров: 1161; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |