Рассмотрим секущую АВ графика функции y = f(x) такую, что точки А и В имеют соответственно координаты и , где - приращение аргумента. Обозначим через приращение функции. Отметим все на чертеже:
Из прямоугольного треугольника АВС имеем . Так как по определению касательная – это предельное положение секущей, то . Вспомним определение производной функции в точке: производной функции y = f(x) в точке называется предел отношения приращения функции к приращению аргумента при , обозначается . Следовательно, , где - угловой коэффициент касательной. Таким образом, существование производной функции y = f(x) в точке эквивалентно существованию касательной к графику функции y = f(x) в точке касания , причем угловой коэффициент касательной равен значению производной в точке , то есть
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление