Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перестановки. Размещения. Сочетания




 

Пусть есть некоторое конечное множество элементов U ={ a 1, a 2,..., a n}. Рассмотрим набор элементов , где Î U, j = 1, 2,..., r.

Этот набор называется выборкой объема r из n элементов. Любое подмножество U является выборкой, но не всякая выборка является подмножеством U, так как в выборку один и тот же элемент может входить несколько раз (в отличие от подмножества).

Комбинаторные задачи связаны с подсчетом числа выборок объема r из n элементов, где выборки подчиняются определенным условиям, т.е. выбор производится по какому-нибудь принципу. Подсчет числа выборок основывается на двух правилах теории множеств.

Принцип суммы: если card A = m, card B = n и A Ç B = Æ, то card A È B = = m + n. На комбинаторном языке это означает: если объект A можно выбрать m способами, объект B другими n способами и их одновременный выбор невозможен, то выбор “ A или B ” может быть осуществлен m + n способами.

Принцип произведения: если card A = m, card B = n, то card (A ´ B)= m + n. На комбинаторном языке это означает: если объект A может быть выбран m способами, при любом выборе A объект B может быть выбран n способами, то выбор “ A и B ” может быть осуществлен m×n способами.

Пример 1. A = 10 {различных шоколадок}, B = 5 { различных пачек печенья}. Выбор “ A или B ” означает, что выбирается что-то одно и способов выбора в этом случае будет 15. Выбор “ A и B ” означает, что выбирается 1 шоколадка и 1 пачка печенья и различных вариантов для такого выбора будет 50.

Пример 2. Бросают 2 игральные кости. Сколькими способами они могут выпасть так, что на каждой кости выпадет четное число очков либо на каждой кости выпадет нечетное число очков?

Пусть m – число возможностей для выпадения четного числа на одной кости, n – число возможностей для выпадения нечетного числа. Здесь m = n = 3. По правилу произведения количество выпадения четных чисел, как и нечетных, равно 9. По правилу суммы количество возможностей для выпадения двух четных и двух нечетных чисел будет 18.

Рассмотрим основные способы формирования выборок.

Определение. Выборка называется упорядоченной, если в ней задан порядок следования элементов. Если порядок следования элементов несущественен, то выборка называется неупорядоченной.

Из определения следует, что две упорядоченные выборки, состоящие из одних и тех же элементов, но расположенных в разном порядке, являются различными.

Перестановки. Упорядоченные выборки, объемом n из n элементов, где все элементы различны, называются перестановками из n элементов. Число перестановок из n элементов обозначается Pn.

Теорема. P = n!

Доказательство проводится по индукции. Очевидно, если n = 1, то перестановка только одна и P 1 = 1!. Пусть для n = k теорема верна и Pk = k!, покажем, что она тогда верна и для n = k +1. Рассмотрим (k +1)- й элемент, будем считать его объектом A, который можно выбрать k +1 способами. Тогда объект B – упорядоченная выборка из оставшихся k элементов по k. B соответствии с индуктивным предположением объект B можно выбрать k! способами. По принципу произведения выбор A и B можно осуществить k!(k +1) = (k +1)! способами. Совместный выбор A и B есть упорядоченная выборка из k + 1 элементов по k + 1.

Пример 3. Сколько существует способов, чтобы расположить на полке 10 различных книг? Ответ: 10!

Можно рассуждать иначе. Выбираем первый элемент, это можно сделать n способами. Затем выбираем второй элемент, это можно сделать (n - 1) способами. По правилу произведения упорядоченный выбор двух элементов можно осуществить n ´(n - 1) способами. Затем выбираем третий элемент, для его выбора останется n - 2 возможности, последний элемент можно выбрать единственным способом. Мы вновь приходим к формуле: n (n - 1)(n - r)... 1.

Размещения. Упорядоченные выборки объемом m из n элементов (m < n), где все элементы различны, называются размещениями. Число размещений из n элементов по m обозначается .

Теорема. =

Обозначим x = . Тогда оставшиеся (nm) элементов можно упорядочить (nm)! способами. По принципу произведения, если объект A можно выбрать x способами, объект B (nm)! способами, то совместный выбор “ A и B ” можно осуществить x ×(nm)! способами, а выбор “ A и B ” есть перестановки и Pn = n! Отсюда x = =

Рассуждая иначе: первый элемент выбираем n способами, второй – (n – 1) способами и т.д., m –й элемент выбираем (nm + 1) способом. По принципу произведения вновь имеем: n (n – 1)...(nm +1), что совпадает с .

Пример 4. Группа из 15 человек выиграла 3 различных книги. Сколькими способами можно распределить эти книги среди группы?

Имеем = 15 ×14 ×13 = 2730.

Сочетания. Неупорядоченные выборки объемом m из n элементов (m < n) называются сочетаниями. Их число обозначается .

Теорема.

Доказательство. Очевидно, Действительно, объект A – неупорядоченная выборка из n элементов по m, их число . После того, как эти m элементов отобраны, их можно упорядочить m! способами (в роли объекта B выступает “порядок“ в выборке). Совместный выбор “ A и B “ – упорядоченная выборка.

Пример 5. Группа из 15 человек выиграла 3 одинаковых книги. Сколькими способами можно распределить эти книги?

Сочетания, размещения и перестановки являлись подмножествами исходного множества. Рассмотрим выборки, которые не являются подмножествами.

Размещения с повторениями. Упорядоченные выборки объемом m из n элементов, где элементы могут повторяться, называются размещениями с повторениями. Их число обозначается (n).

Теорема. (n) = nm.

Доказательство. Первый элемент может быть выбран n способами, второй элемент также может быть выбран n способами и так далее, m -й элемент также может быть выбран n способами. По принципу произведения получаем nm.

Пример 6. Кодовый замок состоит из четырех разрядов, в каждом разряде независимо от других могут быть выбраны цифры от 0 до 9. Сколько возможных комбинаций?

Здесь n = 10, m = 4 и ответом будет 104.

Пример 7. Рассмотрим вектор длины m, каждая координата которого может принимать всего 2 значения: 0 или 1. Сколько будет таких векторов?

Это есть выборка, объемом m из двух элементов.Ответ:2 m

Перестановки с повторениями. Пусть имеется n элементов, среди которых k 1 элементов первого типа, k 2 элементов второго типа и т.д., ks элементов s -го типа, причем k 1 + k 2 +... + ks = n. Упорядоченные выборки из таких n элементов по n называются перестановками с повторениями, их число обозначается Cn (k 1, k 2,..., ks). Числа Cn (k 1, k 2,..., k s) называются полиномиальными коэффициентами.

Теорема. Cn(k1,..., ks)=

Доказательство проведем по индукции по s, т. е. по числу типов элементов. При s = 1 утверждение становится тривиальным: k 1 = n, все элементы одного типа и Cn (n) = 1. В качестве базы индукции возьмем s = 2, n = k 1 + k 2. В этом случаем перестановки с повторениями превращаются в сочетания из n элементов по k 1 (или k 2): выбираем k 1 место, куда помещаем элементы первого типа.

Cn (k 1, k 2) =

Пусть формула верна для s = m, т.е. n = k 1 +... + km и

Cn(k 1,..., km)=

Докажем, что она верна для s = m + 1 (n = k 1 +... + km + km +1). В этом случае перестановку с повторениями можно рассматривать как совместный выбор двух объектов: объект A – выбор k m + 1 места для элементов (m + 1)-го типа; объект B – перестановка с повторениями из (nkm +1) элементов. Объект A можно выбрать способом, B (k 1,..., k m) способами. По принципу произведения

и мы получили требуемую формулу.

Замечание. Числа называются биноминальными коэффициентами. Из этой формулы следует, что

Пример 8. Сколько различных слов можно получить, переставляя буквы в слове “математика”?

Решение. Буква “а” входит 3 раза (k 1= 3), буква “м” – 2 раза (k 2 = 2), “т” – 2 раза (k 3 = 2), буквы “е”, ”к”, ”и” входят по одному разу, отсюда k 3 = k 4 = k 5 = 1.

C 10 (3, 2,, 2, 1, 1, 1) = =151200.

Сочетания с повторениями. Пусть имеется n типов элементов, каждый тип содержит не менее m одинаковых элементов. Неупорядоченная выборка объемом m из имеющихся элементов (их число ³ m ´ n) называется сочетанием с повторением. Число сочетаний с повторениями обозначается (n).

Теорема. (n) = .

Доказательство. Пусть в выборку вошло m 1 элементов первого типа, m 2 элементов второго типа,... m nn -го типа. Причем каждое 0 £ m i £ m и m 1+ m 2+...+ mn = = m. Сопоставим этой выборке вектор следующего вида: Очевидно, между множеством неупорядоченных выборок с повторениями и множеством векторов { bn } существует биекция (докажите это!). Следовательно, (n) равно числу векторов bn. “ Длина вектора” bn равна числу 0 и 1, или m + + n– 1. Число векторов равно числу способов, которыми m единиц можно поставить на m + n - 1 мест, а это будет .

Пример 9. В кондитерской имеется 7 видов пирожных. Покупатель берет 4 пирожных. Сколькими способами он может это сделать? (Предполагается, что пирожных каждого вида ³ 4).

Число способов будет

Пример10. Пусть V = { a, b, c }. Объем выборки m = 2. Перечислить перестановки, размещения, сочетания, размещения с повторениями, сочетания с повторениями.

1. Перестановки: { abc, bac, bca, acb, cab, cba }. P 3=3!=6.

2. Размещения: {(ab), (bc), (ac), (ba), (cb), (ca)}.

3. Сочетания: {(ab), (ac), (bc)}.

4. Размещения с повторениями: {(ab), (bc), (ac), (ba), (cb), (ca), (aa), (bb), (cc)}. (3)= 32 = 9.

5. Сочетания с повторениями: {(ab), (bc), (ca), (aa), (bb), (cc)}.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 827; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.