Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элементарные функции алгебры логики




ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

 

Обозначения: E 2={0,1}; Е = E 2´ E 2´...´ E 2 – прямое произведение n сомножителей; (x ,.., xnE 2, | E 2| – мощность E 2, | E 2|=2, тогда | Е |=2 n.

Определение 1. Функцией алгебры логики называется закон, осуществляющий отображение Е E 2, причем отображение всюду определено и функционально.

Так как множество Е конечно, то задать отображение Е Þ E 2, означает задать множество наборов из Е и для каждого набора указать его образ в Е 2.

Пример 1. Пусть n =2, тогда Е ={(0 0),(0 1),(1 0),(1 1)}, отображение Е Þ E 2 задано, например, так: (0 0) Þ0; (0 1) Þ1; (1 0) Þ1; (1 1) Þ1.

Тем самым задана функция, для которой мы будем использовать стандартное обозначение f (x 1, x 2), записывая эту функцию в виде таблицы:

x 1 x 2 f (x 1, x 2)
     

Здесь x 1 и x 2 обозначают названия столбцов, а f – символ, обозначающий отображение. Следует обратить внимание, что функции f (x 1, x 2) и f (y 1, y 2) задают одно и то же отображение, и их таблицы отличаются только названиями столбцов.

Определение 2. Таблица, задающая функцию f (x 1, x 2,..., xn), называется таблицей истинности для этой функции.

Рассмотрим функции одной переменной. Их будет всего 4, они задаются следующими таблицами истинности:

x f 0(x)
     

функция называется константой 0, записывается f 0(x) 0;

x f 1(x)
   

функция называется тождественной, записывается f 1(x)= x;

x f 2(x)
   

функция называется «не x» и записывается f 2 (x)= ;

x f 3(x)
   

функция записывается f 3(x) 1 и называется константой 1. Если стандартным расположением переменной x считать 0 в первой строке и 1 во второй, то функции f 0, f 1, f 2, f 3 определяются однозначно наборами значений: f 0=(0,0), f 1=(0,1), f 2=(1,0) и f 3=(1,1). Наборы значений функций составляют множество E 2´ Е 2, поэтому количество функций одной переменной равно | E 2 E 2|=4. Для удобства функции пронумерованы так, что двоичный код номера совпадает с набором значений функции.

Рассмотрим функции двух переменных f (x 1, x 2). Функции двух переменных определены на множестве Е ={(0 0),(0 1),(1 0),(1 1)}, эти наборы переменных из Е можно тоже рассматривать как двоичные коды чисел 0,1,2,3, именно такой порядок расположения наборов (x 1, x 2) будем считать стандартным. Тогда функции f (x 1, x 2) определяются однозначно наборами значений (b 1, b 2, b 3, b 4), где каждое bi Î E 2, поэтому (b 1, b 2, b 3, b 4Е . Следовательно, число функций двух переменных равно 24=16, занумеруем их числами от 0 до 15 так, чтобы двоичный код номера совпадал с набором значений функции.

x 1 x 2 f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f 12 f 13 f 14 f 15
0 0 0 1 1 0 1 1                                

Некоторые из этих функций носят специальные названия и играют такую же роль, как элементарные функции в анализе, поэтому называются элементарными функциями алгебры логики. Перечислим их.

1) f 1(x 1, x 2) = (x 1& x 2), читается «конъюнкция х 1 и х 2», иногда вместо знака & употребляют знак или вообще его опускают, пишут (х 1 х 2). (х 1& х 2) совпадает с обычным произведением х 1 х 2 и совпадает с min(x 1, x 2). Эту операцию называют также логическим умножением.

2) f 6(x 1, x 2) = (x 1Å x 2) – сложение х 1 и х 2 по модулю два, иногда пишут (х 1+ х 2) mod 2.

3) f 7(x 1, x 2) = (x 1Ú x 2), читается «х 1 дизъюнкция х 2», она совпадает с max(x 1, x 2), ее называют логическим сложением.

4) f 8(x 1, x 2) = (x 1 x 2), читается «х 1 стрелка Пирса х 2» и совпадает с отрицанием дизъюнкции, другие названия: функция Вебба, функция Даггера.

5) f 9(x 1, x 2) = (x 1~ x 2), читается «х 1 эквивалентно х 2».

6) f 13(x 1, x 2) =(x 1 x 2), читается «х 1 импликация х 2», иногда обозначается (х1Éх2), т. е. х1 влечет х2.

7) f 14(x 1, x 2) = (x 1| x 2), читается «х 1 штрих Шеффера х 2», она является отрицанием конъюнкции.

Cимволы ,&,Ú, ,~, ,Å,|, участвующие в обозначениях элементарных функций, называются логическими связками или просто связками. Переменные 0 и 1 называются логическими или булевыми переменными, причем 0 соответствует «лжи», а 1 – «истине», а функции алгебры логики называются еще и блевыми функциями.

Рассмотрим функции f (x 1... xn), где (x 1... xnЕ , тогда число наборов (x 1... xn),где функция f (x 1... xn) должна быть задана, равно | Е |=2 n. Обозначим множество всех функций двузначной алгебры логики Р 2. Обозначим через Р 2(n) число функций, зависящих от n переменных. Очевидно, Р 2(n)=22 n.

С ростом n число Р 2(n) быстро растет: P 2(1)=4, P 2(2)=16, P 2(3)=256, P 2(4)=65536. При больших n табличный способ задания функций становится неприемлемым, используется формульное задание функций. Но прежде чем ввести понятие формулы, дадим определение существенной переменной.

Определение 3. Функция f (x 1,..., xi –1, xi, xi +1,..., xn) существенно зависит от хi, если существуют такие значения a 1,... ai –1, ai +1,... an переменных x 1,... xi –1, xi +1,... xn, что f (a 1,... ai –1, 0, ai +1... anf (a1... ai –1, 1, ai +1... an). Тогда переменная хi называется существенной переменной. В противном случае хi называется фиктивной переменной.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 438; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.