КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема Жегалкина
Каждая функция из может быть представлена в виде полинома Жегалкина единственным образом. Здесь единственность понимается с точностью до порядка слагаемых в сумме и порядка сомножителей в конъюнкциях: , s = 0, 1,..., n. Доказательство. Любая функция из Р 2 может быть представлена формулой над { x 1 & x 2, x 1Å x 2, 0, 1}, а эта формула после раскрытия всех скобок и приведения подобных членов дает полином Жегалкина. Докажем единственность представления. Рассмотрим функции f (x 1,..., xn) от n переменных. Мы знаем, что всего таких функций, т.е. их таблиц истинности, 2 n. Подсчитаем число различных полиномов Жегалкина от n переменных, т.е. число вариаций вида: . Число наборов равно числу всех подмножеств множества { x 1,..., xn }, сюда входит и пустое множество (если s = 0). Число подмножеств множества из n элементов равно 2 n, а так как каждый набор входит с коэффициентом , принимающим два значения: 0 или 1, то число всевозможных полиномов будет . Так как каждому полиному соответствует единственная функция, число функций от n переменных равно числу полиномов, то каждой функции будет соответствовать единственный полином. Определение. Функция f (x 1,..., xn), полином Жегалкина для которой имеет следующий линейный относительно переменных вид: f = а 0 Å а 1 х 1 Å а 2 х 2 Å... Å аnхn, называется линейной. Лемма о нелинейной функции. Суперпозицией нелинейной функции, отрицания и константы 1 можно получить конъюнкцию. Доказательство. Пусть f (x 1,..., xn) – нелинейная функция. Тогда полином Жегалкина содержит для нее слагаемое, в котором присутствует произведение xixj. Будем считать для простоты, что x 1 x 2 в многочлене Жегалкина является этим произведением. Произведя группировку слагаемых, функцию f представим в виде Функция h 0 не есть тождественный нуль, иначе в полиноме Жегалкина отсутствует слагаемое с произведением x 1 x 2. Тогда существует набор (a 3, …, an) из 0 и 1, для которого h 0(a 3, …, an) = 1. Пусть h 1 (a 3, …, an) = a, h 2(a 3, …, an) = b, h 3(a 3, …, an) = c. Тогда Построим функцию: где d = ab Å c. Если d = 0, то h (x 1, x 2) = x 1 x 2. Если d = 1, то h (x 1, x 2) = x 1 x 2 Å 1 и тогда Лемма доказана. Функция f (x 1,..., x n) сохраняет константу a Î {0, 1}, если f (a, …, a) = a. Пример 4. Функция xy сохраняет 0, сохраняет 1. Функция x ® y сохраняет 1 и не сохраняет 0.
Дата добавления: 2014-12-27; Просмотров: 684; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |