Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Минимизация нормальных форм




МИНИМИЗАЦИЯ БУЛЕВЫХ ФУНКЦИЙ

Минимальной ДНФ (МДНФ) функции f (x 1,..., xn) называется ДНФ, реализующая функцию f и содержащая минимальное число символов переменных по сравнению со всеми другими видами ДНФ, реализующими функцию f.

Если для всякого набора = (a 1,..., an) значений переменных условие g ()=1 влечёт , то функция g называется частью функции f (или функция f накрывает функцию g). Если при этом для некоторого набора = (c 1,..., cn) функция g ()=1, то говорят, что функция g накрывает единицу функции f на наборе (или что g накрывает конституенту единицы функции f). Заметим, что конституента единицы функции f есть часть функции f, накрывающая единственную единицу функции f.

Элементарная конъюнкция K называется импликантом функции f, если для всякого набора =(a 1,..., an) из 0 и 1 условие K ()=1 влечет f ()=1.

Импликант K функции f называется простым, если выражение, получающееся из него выбрасыванием любых множителей, уже не импликант функции f.

Ясно, что всякий импликант функции f есть часть функции f.

Теорема. Всякая функция реализуется дизъюнкцией всех своих простых имликант (ПИ).

Доказательство. Пусть f (x 1,..., xn) есть функция, а A = K 1 v... v Km – дизъюнкция всех ее простых импликант. Пусть = (a 1,..., an) – произвольный набор длины n из 0 и 1.

Если A () = 1, то найдется дизъюнктивное слагаемое Ki () = 1, что влечет f () = 1, ибо Ki есть импликант функции f.

Если f () = 1, то в СДНФ для функции f найдется элементарная конъюнкция K, равная на этом наборе единице. Один из простых имликантов Kj функции f получается выбрасыванием некоторых множителей из K и потому Kj () = 1, а тогда A () = 1.

Следовательно, f = A. Теорема доказана.

Сокращенная ДНФ функции f есть дизъюнкция всех простых импликант функции f. Всякая функция f реализуется своей сокращенной ДНФ. Для всякой функции, не равной тождественно нулю, существует единственная сокращенная ДНФ.

Пусть A и B – произвольные формулы. Из свойств булевых операций вытекают следующие обратимые правила преобразования ДНФ:

1) – полное склеивание (развертывание);

2) – неполное склеивание;

3) – обобщенное склеивание;

4) – поглощение;

5) – идемпотентность (удаление дублирующих членов).

Теорема (Квайна). Если в СДНФ функции f провести все операции неполного склеивания, а затем все операции поглощения и удаления дублирующих членов, то в результате получится сокращения ДНФ функции f.

Доказательство. Пусть имеем сокращенную ДНФ функции f. Проведем все операции развертывания к каждому простому импликанту для получения недостающих переменных в каждом дизъюнктивном слагаемом сокращенной ДНФ. В полученном выражении из нескольких одинаковых дизъюнктивных слагаемых оставим только по одному экземпляру. В результате получим СДНФ функции f. Теперь, исходя из полученной СДНФ, в обратном порядке проведем операции добавления одинаковых дизъюнктивных слагаемых (с помощью правил идемпотентности), неполного склеивания и поглощения. В итоге получим исходную сокращенную ДНФ.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 945; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.