КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ошибки экспертных систем
Самосознание ЭС Глубина ЭС Экспертная система должна иметь глубокие знания; это значит, что она способна работать эффективно в узкой предметной области, содержащей нетривиальные задачи. Экспертные системы работают с предметными областями реального мира, а не с тем, что специалисты в области ИИ называют игрушечными предметными областями. В предметной области реального мира применяют фактическую информацию к практической проблеме и находят решения, которые являются ценными с точки зрения критерия, определяющего соотношение стоимости и эффективности. В тех случаях, когда по отношению к сложной задаче или данным о ней сделаны существенные упрощения, полученное решение может оказаться неприменимым в масштабах, которые характерны для реальной проблемы. Если проблема сверхупрощена или нереалистична, то размерность пространства поиска будет, скорее всего, резко уменьшена, и не возникнет проблем с быстродействием и эффективностью, характерных для реальных задач. Экспертные системы имеют знания, позволяющие им рассуждать об их собственных действиях, и структуру, упрощающую такие рассуждения. Если ЭС основана на правилах, то ей легко просмотреть цепочки выводов, которые она порождает, чтобы прийти к решению задачи. Если заданы еще и специальные правила, из которых ясно, что можно сделать с этими цепочками выводов, то можно использовать эти знания для проверки точности, устойчивости и правдоподобия решений задачи и построить доводы, оправдывающие или объясняющие процесс рассуждения. Это знание системы о том, как она рассуждает, называется метазнанием, что означает знания о знаниях. У большинства ныне существующих ЭС есть механизм объяснения. Это знания, необходимые для объяснения того, каким образом система пришла к данным решениям. Большинство этих объяснений включают демонстрацию цепочек выводов и доводов, объясняющих, на каком основании было применено каждое правило в цепочке. Возможность проверять собственные процессы рассуждения и объяснять свои действия — это одно из самых важных свойств ЭС. Существует еще одно отличие ЭС от традиционных программ. Традиционные программы разрабатываются таким образом, чтобы каждый раз порождать правильный результат, но ЭС заведомо создаются так, чтобы вести себя как эксперты, которые, как правило, дают правильные ответы, но иногда способны ошибаться. На первый взгляд кажется, что в этом отношении традиционные программы имеют явное преимущество. Однако это преимущество мнимое. Традиционные программы для решения сложных задач, напоминающих те, которые подходят для ЭС, тоже могут делать ошибки. Но их ошибки чрезвычайно трудно исправлять, поскольку стратегии, эвристики и принципы, лежащие в основе этих программ, не сформулированы явно в их тексте.
Дата добавления: 2014-12-27; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |