Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Справедливо для всех, тогда и только тогда, когда функция выпукла вверх на




Противоположное неравенство

.

Теорема 30.2. Функция, дифференцируемая на интервале,тогда и только тогда выпукла вниз на этом интервале, когда для любой точки и любой точки справедливо неравенство

 

◄ Доказательство проведём для случая выпуклой вниз функции. Пусть сначала дифференцируемая функция выпукла вниз на . Тогда, какустановлено в теореме 30.1, справедливы неравенства (5) и (6).Неравенство (5) можно преобразовать к равносильному виду

. (9)

Преобразование состоит в умножении обеих частей неравенства (5) на положительный знаменатель и замене обозначений: точку заменяем на , а точку на точку , считая, что . Точно также, при , преобразуем неравенство (6), заменяя точку на точку , а точку на . После этого преобразования снова получим неравенство (9).

Таким образом, если дифференцируемая функция выпукла вниз на интервале , то для всех выполняется неравенство (9). Для выпуклой вверх функции имеем, соответственно,

.

Обратно, пусть для всех выполняется неравенство (9).

Рассмотрим произвольные точки , . Применяя неравенство (9) к точке и считая , получим неравенство , а применяя его к точке и считая , получаем неравенство , на основании которых, с учётом условия , имеем

.

Следовательно, производная функции не убывает на . По теореме 30.1 функция выпукла вниз на .

 

Геометрически свойство выпуклости вниз дифференцируемой функции f на означает, что её график в пределах этого интервала располагается выше касательной, проведенной в любой точке графика; для выпуклой вверх дифференцируемой функции картина противоположная (см. рис. 2).


Рис.2

 

Замечание 1. Если обозначить

,
то свойство выпуклости вниз(вверх) дифференцируемой функции на равносильно тому, что для любой точки неравенство () справедливо для всех . Отметим, что

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 350; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.