КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формула полной вероятности
Сложение вероятностей совместимых событий Вероятность суммы двух совместимых событий A и В равна сумме вероятностей этих событий минус вероятность их произведения: Р(А + В) = Р(А) + Р (В) — Р(АВ). Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: Р(А)=0,7 и Р(В)=0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий. Очевидно, события А к В совместимы и независимы. Поэтому Р (А + В) =Р (А) +Р (В) - Р (АВ) = 0,7 + 0,8 - 0,7* 0,8 = 1,5 — 0,56 = 0,94. Замечание. Если события А и В несовместимы, то их произведение АВ есть невозможное событие и, следовательно, Р (АВ) = 0. Вероятность события А, которое может наступить лишь при условии появления одного из n попарно несовместимых событий В1, В2,..., Вn образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:
Р (А) = Р (В1) PB1 (А) + Р (В2)РВ2 (А) +... + Р (Вn)РBn(А)
Имеются три одинаковых по виду ящика. В первом находятся две белые мыши и одна серая, во втором — три белые и одна серая, в третьем — две белые и две серые мыши. Какова вероятность того, что из наугад выбранного ящика будет извлечена белая мышь? Обозначим В1 — выбор первого ящика, В2 — выбор второго ящика, B3 — выбор третьего ящика, А — извлечение белой мыши. Так как все ящики одинаковы, то Р (B1)= Р (B2) = Р (B3) = 1/3. Если выбран первый ящик, то Рв1 (А) = 2/3. Аналогично Рв2 (А) =3/4, Рв3(А) = 0,5. Наконец, по формуле получаем:
В группе студентов 4 отличника, 13 хорошо успевающих и 8 слабых студентов. Результаты предшествующих экзаменационных сессий показали, что отличники получают только отличные оценки (потому они и отличники); «хорошисты», как правило, в девяти случав из десяти получают отличные или хорошие оценки; наконец слабые студенты в одном случае из пяти получают хорошие оценки. Для сдачи экзамена выбирается один студент. Найти вероятность события А, что студент получит хорошую или отличную оценку.
Дата добавления: 2015-04-24; Просмотров: 536; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |