Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные формулы комбинаторики




 

Комбинаторика — раздел математики, изучающий вопросы о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Как при решении задач с использованием классического опре­деления вероятности, так и в дальнейшем нам понадобятся некото­рые формулы комбинаторики. Приведем наиболее употребитель­ные из них.

Размещениями из n различных элементов по m элементов (m х n) называются комбинации, составленные из данных n элементов по m элементов, которые отличаются либо са­мими элементами, либо порядком элементов.

Например, из трех элементов а, b, с можно составить по два эле­мента следующие размещения:

ab, ас, ba, bc, ca, cb.

Число различных размещений из n элементов по m элементов определяется с помощью формулы

.

Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2? Искомое число сигналов 5*6=30.

Перестановками из n различных элемен­тов называются размещения из этих n элементов по n.

Перестановки можно считать частным случаем размещений при m = n. Следовательно, число всех перестановок из n элементов вычисляется по формуле Рn = n(n - 1)(n - 2)... 3 • 2 • 1 = n!

Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа толь­ко один раз? Искомое число трехзначных чисел Р = 3! = 1 *2*3 = 6.

Сочетаниями из n различных элементов по m элементов называются комбинации, составленные из данных n элементов по m элементов, которые отличаются хотя бы одним элементом.

Отметим разницу между сочетаниями и размещениями: в первых не учитывается порядок элементов.

Число сочетаний из п элементов по m элементов вычисляется по формуле

Отметим особенность формулы:

.

Этой особенностью удобно пользоваться, когда m > n/2.

Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей? Искомое число способов

Приведем, наконец, один из примеров применения формул ком­бинаторики к нахождению вероятности события.

Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Какова вероятность того, что номер набран правильно?

Две последние цифры можно набрать способами, а благо­приятствовать событию М (цифры набраны правильно) будет толь­ко один способ. Поэтому

 





Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 478; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.