Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод замены переменной (метод подстановки)




Метод разложения (непосредственного интегрирования)

Основные методы вычисления определенных интегралов

Этот метод основан на использовании свойств определенного интеграла, знании формул простейших неопределенных интегралов и применении формулы Ньютона-Лейбница.

 

Пример 10. Вычислить определенный интеграл .

 

Решение. Воспользуемся свойствами (3) и (4) определенных интегралов:

 

.

 

Первообразные для подынтегральных функций найдем с помощью формул простейших определенных интегралов. Далее, используя формулу Ньютона-Лейбница, получим

 

.

 

 

 

Этот метод основан на замене переменной интегрирования в определенном интеграле с целью свести его вычисление к вычислению такого определенного интеграла, который может быть вычислен методом разложения.

Пример 11. Вычислить интеграл .

 

Решение. Введем новую переменную ; Тогда , откуда .

При замене переменной интегрирования в определенном интеграле необходимо одновременно заменить пределы интегрирования на соответствующие. Имеем: при , при . Отсюда следует, что новым нижним пределом интегрирования будет значение 2, а новым верхним – значение 6. Таким образом

 

.

 

Замечание. Если при замене переменной в неопределенном интеграле мы от новой переменной возвращались к первоначальной переменной , то при замене переменной в определенном интеграле в этом нет необходимости.

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 363; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.