Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференциал функции




Из уравнения (4) можно записать равенство

 

, (6)

где - некоторая величина. При , т.е. тоже стремится к нулю. Преобразовав (6) имеем:

 

, (7)

 

Из (7) видно, что приращение функции состоит из двух слагаемых. Слагаемое называют главной частью приращения функции или дифференциалом функции.

Дифференциал функции равен произведению производной функции на приращение аргумента и символически обозначается :

 

, (8)

-

Рис.2

 

Таким образом, дифференциал функции, в общем случае отличаясь от приращения функции, представляет собой главную часть этого приращения, линейную относительно приращения аргумента. В этом заключается аналитический смысл дифференциала.

Отсюда следует, что при достаточно малых приращениях аргумента величина приращения функции приближенно равна дифференциалу этой функции:

 

, (9)

 

Для выяснения геометрического смысла дифференциала рассмотрим график функции , изображенный на рис.2. В точке М проведем касательную. Рассмотрим АВМ. Катет МВ равен приращению аргумента ; ; .Итак, .

Таким образом, дифференциал функции является приращением ординаты касательной (АВ), которое соответствует приращению (МВ) абсциссы. В этом заключается геометрический смысл дифференциала.

Дифференциалом аргумента называют приращение аргумента, т.е.

 

, (10)

 

С учетом (10) можно записать:

 

, (11)

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.