Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы прогноза и коррекции




Методы Адамса – Башфорта используют уже сосчитанное значение в точке n, t и в предыдущих точках. В принципе, при построении интерполяционного полинома мы можем использовать и точки tn+ 1, tn+ 2 и т.д. Простейший случай при этом состоит в использовании точек tn +1, tn,…, tn - N и построении интерполяционного полинома степени N +1. При этом возникает класс методов, известный как методы Адамса - Моултона. Если N = 0, то P - линейная функция, проходящая через точки (tn, fn) и (tn+1, fn+1), и соответствующий метод

(3.18)

является методом Адамса - Моултона второго порядка.

Если, N = 2, то P - кубический полином, построенный по точкам (tn+ 1, fn+ 1), (tn, fn), (tn- 1, fn- 1) и (tn- 2, fn- 2) и соответствующий метод

(3.19)

является методом Адамса-Моултона четвёртого порядка.

Заметим, что в формулах (3.18) и (3.19) значение fn+ 1 неизвестно. Дело в том, что для вычисления f (tn+ 1, yn+ 1) =fn+ 1 нужно знать три значения yn+ 1, которое само пока является неизвестным. Например, соотношение (3.18) является уравнением

(3.20)

относительно неизвестного значения yn+ 1. То же самое справедливо и относительно (3.19). Следовательно, методы Адамса-Моултона определяют yn+ 1 неявно и в силу этого называются неявными. В то же время, методы Адамса – Башфорта называются явными, поскольку они для нахождения значения yn+ 1 не требуют решения никаких уравнений. На практике обычно не решают уравнение (3.20), а используют совместно явную и неявную формулы, что приводит к методу прогноза и коррекции. Одним из широко используемых методов прогноза и коррекции является объединение методов Адамса четвёртого порядка (3.17) и (3.19):

В целом этот метод является явным. Сначала по формуле Адамса – Башфорта вычисляется значение , являющееся «прогнозом» для . Затем используется для вычисления приближенного значения , которое, в свою очередь, используется в формуле Адамса - Моултона. Таким образом, формула Адамса -Моултона «корректирует» приближение, даваемое формулой Адамса– Башфорта.

Может возникнуть вопрос - зачем вообще нужна коррекция, если прогноз имеет четвёртый порядок точности? Ответ на этот вопрос дает оценка величины членов, выражающих погрешность. Ошибка усечения ряда для формулы прогноза (3.17) равна:

а для формулы коррекции (3.19):

т. е. погрешность усечения ряда при коррекции в 13 раз меньше.

Рис. 3.5. Алгоритм метода прогноза и коррекции

Формулы коррекции гораздо более точны, чем формулы прогноза, а потому их использование оправданно, хотя и связано с дополнительными вычислениями (рис. 3.5). Чтобы добиться наибольшей точности вычисления, коррекцию в методах прогноза и коррекции часто повторяют на одном и том же шаге несколько раз. На практике для обеспечения сходимости решения достаточно 2-3 циклов коррекции.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1023; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.