Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Доказательство




Пусть и . Докажем, что . Так как и , то последнее равенство можно переписать в равносильном виде , откуда следует . Справедливость последнего равенства следует из коммутативности операции .

Доказывается аналогично 1). Пусть . Тогда : , , . Далее по аналогии.

Пусть . Докажем, что . Пусть . Тогда . Аналогично доказывается .

Дано: , где − нейтральный элемент в . Действуя на все элементы этого равенства функцией , получаем требуемое равенство.■

Следствие. Из доказанной теоремы следует, что если и − группа, то − также группа. Аналогично для колец и полей.

Теорема 8. Все бесконечные циклические группы изоморфны между собой. Изоморфны между собой также и все конечные циклические группы данного порядка .

Доказательство. Действительно, любая бесконечная циклическая группа с образующим элементом отображается взаимно однозначно на аддитивную группу , если каждому элементу этой группы ставится в соответствие число . Это отображение является изоморфизмом, так как согласно (3) при перемножении степеней элемента показатели складываются. Если рассматривается конечная циклическая группа порядка с образующим элементом , то, рассматривая мультипликативную группу корней ­−ой степени из единицы и обозначая , изоморфизм строится сопоставлением элементу группы числа . Изоморфность такого отображения следует из следствия к теореме из § 1.■




Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 342; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.