КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение. Частные производные вида и т.д. называются смешанными производными. 2 страница
С геометрической точки зрения D - площадь фигуры, ограниченной контуром.
Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.
Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi.
В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму где f – функция непрерывная и однозначная для всех точек области D. Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.
Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области D.
С учетом того, что Si = Dxi × Dyi получаем:
В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у. Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:
Условия существования двойного интеграла.
Сформулируем достаточные условия существования двойного интеграла.
Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл существует.
Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.
Свойства двойного интеграла.
1)
2)
3) Если D = D1 + D2, то
4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.
5) Если f(x, y) ³ 0 в области D, то .
6) Если f1(x, y) £ f2(x, y), то .
7) .
Вычисление двойного интеграла.
Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и j £ y, тогда
y y = y(x)
D
y = j(x)
a b x
Пример. Вычислить интеграл , если область D ограничена линиями: y = 0, y = x2, x = 2. y
D
0 2 x
= =
Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями y = c, y = d (c < d), x = F(y), x = Y(y) (F(y) £ Y(y)), то
Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2. y y = x D
0 x
Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.
= =
Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.
1.
2.
3.
Замена переменных в двойном интеграле. Расмотрим двойной интеграл вида , где переменная х изменяется в пределах от a до b, а переменная у – от j1(x) до j2(х). Положим х = f(u, v); y = j(u, v)
Тогда dx = ; dy = ;
т.к. при первом интегрировании переменная х принимается за постоянную, то dx = 0.
, т.е. пожставляя это выражение в записанное выше соотношение для dy, получаем:
Выражение называется определителем Якоби или Якобианом функций f(u, v) и j(u, v).
(Якоби Карл Густав Якоб – (1804-1851) – немецкий математик)
Тогда Т.к. при первом интегрировании приведенное выше выражение для dx принимает вид (при первом интегрировании полагаем v = const, dv = 0), то при изменении порядка интегрирования, получаем соотношение:
Двойной интеграл в полярных координатах. Воспользуемся формулой замены переменных: При этом известно, что В этом случае Якобиан имеет вид:
Тогда Здесь t - новая область значений,
Тройной интеграл.
При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет. Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.
Суммирование производится по области v, которая ограничена некоторой поверхностью j(x, y, z) = 0.
Здесь х1 и х2 – постоянные величины, у1 и у2 – могут быть некоторыми функциями от х или постоянными величинами, z1 и z2 – могут быть функциями от х и у или постоянными величинами.
Пример. Вычислить интеграл
Замена переменных в тройном интеграле.
Операция замены переменных в тройном интеграле аналогична соответсвующей операции для двойного интеграла. Можно записать:
Наиболее часто к замене переменной в тройном интеграле прибегают с целью перейти от декартовой прямоугольной системы координат к цилиндрической или сферической системе. Рассмотрим эти преобразования подробнее.
Цилиндрическая система координат.
z
P
z
q x r
y
Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:
Для представления тройного интеграла в цилиндрических координатах вычисляем Якобиан:
Итого:
Сферическая система координат.
z
P
r j
0 q x
y Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:
Для представления тройного интеграла в сферических координатах вычисляем Якобиан: Окончательно получаем:
Геометрические и физические приложения кратных интегралов. 1) Вычисление площадей в декартовых координатах.
y y = j(x)
S
y = f(x) a b x
Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:
Пример. Вычислить площадь фигуры, ограниченной линиями y2 = 4x + 4; x + y – 2 = 0. Построим графики заданных функций:
Линии пересекаются в двух точках – (0, 2) и (8, -6). Таким образом, область интегрирования ограничена по оси Ох графиками кривых от до х = 2 – у, а по оси Оу – от –6 до 2. Тогда искомая площадь равна: S =
2) Вычисление площадей в полярных координатах.
3) Вычисление объемов тел.
Пусть тело ограничено снизу плосткостью ху, а сверху– поверхностью z = f(x,y), а с боков – цилиндрической поверхностью.
Такое тело называется цилиндроид.
z
z = f(x, y)
x1 y1 x2
x y2
y
V =
Пример. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1; x + y + z =3 и плоскостью ХОY.
Пределы интегрирования: по оси ОХ: по оси ОY: x1 = -1; x2 = 1;
4) Вычисление площади кривой поверхности.
Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле:
Если поверхность задана в неявном виде, т.е. уравнением z = j(x, y), то площадь этой поверхности вычисляется по формуле:
5)Вычисление моментов инерции площадей плоских фигур.
Пусть площадь плоской фигуры (область D) ограничена линией, уравнение которой f(x,y) = 0. Тогда моменты инерции этой фигуры находятся по формулам:
- относительно оси Ох: - относительно оси Оу: - относительно начала координат: - этот момент инерции называют еще полярным моментом инерции.
6) Вычисление центров тяжести площадей плоских фигур.
Координаты центра тяжести находятся по формулам:
здесь w – поверхностная плотность (dm = wdydx – масса элемента площади).
7) Вычисление объемов тел с помощью тройного интеграла.
Если поверхность тела описывается уравнением f(x, y, z) = 0, то объем тела может быть найден по формуле: при этом z1 и z2 – функции от х и у или постоянные, у1 и у2 – функции от х или постоянные, х1 и х2 – постоянные.
8) Координаты центра тяжести тела.
9) Моменты инерции тела относительно осей координат.
10) Моменты инерции тела относительно координатных плоскостей.
11) Момент инерции тела относительно начала координат.
В приведенных выше формулах п.п. 8 – 11 r – область вычисления интеграла по объему, w – плотность тела в точке (х, у, z), dv – элемент объема - в декартовых координатах: dv = dxdydz; - в циллиндрических координатах: dv = rdzdjdq; - в сферических координатах: dv = r2sinjdrdjdq.
12) Вычисление массы неоднородного тела.
Теперь плотность w – величина переменная.
Дата добавления: 2015-04-25; Просмотров: 552; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |