КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Концепция полимодельной идентификации объектов
Важный момент построения системы моделей – правильный выбор состава моделей или алгоритмов и порядка ее применения. Задача формирования системы идентификаций может быть сведена к решению задачи анализа или задачи синтеза, либо к промежуточному варианту задач. Задача анализа подразумевает выбор необходимого и достаточного подмножества из фиксированного множества моделей или алгоритмов с известными характеристиками и установление межмодельных информационных воздействий. Задача синтеза предусматривает формирование требований к модели или алгоритму, которые могут быть декомпозированы и детализированы вплоть до состава функционально определенных групп, требований к ним и межмодельным связям. Промежуточный вариант представляет собой сочетание задач анализа и синтеза и заключается в частичном заимствовании из группы существующих моделей или алгоритмов, нахождении необходимого и достаточного дополнения к ним, а также в связях между группами. Задачи анализа и синтеза подразумевают существование множества признаков Lj; jÎ [ 1,J ], фиксирующих условия применимости модели или алгоритма. В состав признаков могут быть включены, например, состав управленческих решений, предполагаемые особенности объекта управления и некоторые другие. Задача формирования системы моделей (опустим алгоритмы для наглядности изложения) на базе анализа группы таковых заключается в следующем. Из множества моделей М1,..., МI подбираются все возможные полнофункциональные группы, т.е. позволяющие проследить связь «управленческие решения – показатели состояния» и таким образом формируется множество Мгр 1,..., Мгр K, где каждая Затем выделенные группы ранжируются в порядке увеличения Тk , т.е.: - первая строка соответствует min {Тk}, kÎ [ 1,К ] - последняя строка соответствует mах {Тk}. kÎ [ 1,К ] Далее среди всех строк матрицы Сkj проводится просеивание по следующему последовательному комплексному правилу с учетом строгого следования принципу Парето-оптимальности: - все строки, целиком состоящие из символа 0, вычеркиваются, т.к. такая группа является непригодной; - среди оставшихся строк осуществляется устранение дублирующих и выбор предпочтительных по вычислительной ресурсоемкости – т.е. если строки совпадают, то среди всех совпадающих выбирается та группа, у которой имеется наименьшее значение вычислительной ресурсоемкости; - среди оставшихся строк анализируются строки, обладающие идентичной вычислительной ресурсоемкостью. Если w -ый элемент строки q соответствует @ или 1, а w -ый элемент строки p соответствует 0, то p -ая строка вычеркивается и соответствующая группа также исключается. Разумеется, здесь тоже можно ввести правило по размытому сопоставлению групп, например, по значению вычислительной ресурсоемкости. Просеянная матрица Сkj~ представляет собой при последовательном переборе ее строк сверху вниз (в сторону увеличения ресурсоемкости) средство выбора наименее ресурсоемкой, но применимой группы моделей из числа сохранившихся после просеивания: Мгр 1~,..., Мгр M~. Те модели из числа М1,..., МI, которые не участвовали в формировании Мгр 1~,..., Мгр M~, исключаются из системы моделей. Задача синтеза системы моделей как полного, так и частичного (когда имеется некоторый задел – подмножество существующих моделей) решается несколько иначе. Первоначально генерируется полное множество требующих учета ситуаций Важно подчеркнуть, что эффективная система моделей нередко не может быть реализована на базе исключительно либо аналитического, либо имитационного моделирования.
Дата добавления: 2015-04-29; Просмотров: 331; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |