Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Наиболее часто применяемые законы распределения результатов измерений и случайных погрешностей




В практике измерений встречаются различные формы кривых распределения случайных величин, целесообразно классифицировать их следующим образом:

− трапецеидальные, например, равномерное, треугольное (Симпсона);

− экспоненциальные, например, распределение Лапласа, распределение Гаусса (нормальное);

− семейство распределений Стьюдента (предельное распределение семейства законов Стьюдента – распределение Коши);

− двухмодальные, например, дискретное двузначное распределение, арксинусоидальное распределение, остро- и кругло-вершинные двухмодальные распределения.

Однако чаще всего имеют дело с нормальным и равномерным распределением плотности вероятностей.

Учитывая многовариантность подходов к выбору оценок и в целях обеспечения единства измерений, правила обработки результатов наблюдений обычно регламентируются нормативно-техническими документами (стандартами, методическими указаниями, инструкциями). Так, в стандарте на методы обработки результатов прямых измерений с многократными наблюдениями указывается, что приведенные в нем методы обработки установлены для результатов наблюдений, принадлежащих нормальному распределению.

 
 

Нормальное распределение плотности вероятности или распределение Гаусса (рисунок 1) характеризуется тем, что, согласно центральной предельной теореме теории вероятностей, такое распределение имеет сумма бесконечно большого числа бесконечно малых случайных возмущений с любыми распределениями.

Применительно к измерениям это означает, что нормальное распределение случайных погрешностей возникает тогда, когда на результат измерения действует множество случайных возмущений, ни одно из которых не является преобладающим. Практически, суммарное воздействие даже сравнительно небольшого числа возмущений приводит к закону распределения результатов и погрешностей измерений, близкому к нормальному.

 
 

В аналитической форме нормальный закон распределения выражается формулой

 

где х – случайная величина; mx – математическое ожидание случайной величины; σ – среднее квадратическое отклонение (СКО); е=2,71828 – основание натурального логарифма; π = 3,14159. Перенеся начало координат в центр распределения mx, и откладывая по оси абсцисс погрешность

 
 

Δx = x − mx, получим кривую нормального распределения погрешностей

 

 
 

Для группы из n наблюдений, распределённых по нормальному закону

Рассмотрим несколько свойств нормального распределения погрешностей.

Кривая нормального распределения погрешностей симметрична относительно оси ординат. Это означает, что погрешности, одинаковые по величине, но противоположные по знаку, имеют одинаковую плотность вероятностей, т.е. при большом числе наблюдений встречаются одинаково часто. Математическое ожидание случайной погрешности равно нулю.

 
 

Из характера кривой следует, что при нормальном законе распределения малые погрешности будут встречаться чаще, чем большие. Так, вероятность появления погрешностей, укладывающихся в интервал от 0 до Δx1 (рис. 1), характеризуемая площадью S1, будет значительно больше, чем вероятность появления погрешностей в интервале от Δx2 до Δx3 (площадь S2). На рис. 2 изображены кривые нормального распределения с различными средними квадратическими отклонениями, причем σ1 > σ2 > σ3.

 

Рис.2. Рассеяние результатов наблюдений

Сравнивая кривые между собой можно убедиться, что чем меньше СКО, тем меньше рассеяние результатов наблюдений и тем больше вероятность того, что большинство случайных погрешностей в них будет мало.

Естественно заключить, что качество измерений тем выше, чем меньше СКО случайных погрешностей. Если вместо случайной величины ввести так называемую нормированную случайную величину

 

 
 

то она также будет распределена по нормальному закону с центром распределения mx, абсцисса которого mx = 0, а σ =1. Поэтому формулу, определяющую плотность вероятности, а также формулу функции распределения величины t можно записать так:

 
 

Определенный интеграл с переменным верхним пределом, имеющий вид

и определяющий значение площади под кривой плотности вероятности, называют функцией Лапласа.

Для нее справедливы следующие равенства:

Ф(− ∞) = −0,5; Ф(0) = 0; Ф(+ ∞) = 0,5; Ф(t) = −Ф(t).

Функция распределения F(t) связана с функцией Лапласа формулой

F(t) = 0,5 +Ф(t). (4.14)

Эта формула позволяет при наличии таблицы значений Ф(t), соответствующих различным значениям t, рассчитать F(t). Таблицы плотности вероятностей f(t) и функции Ф(t) нормированной случайной величины, распределенной по нормальному закону, дают возможность найти плотность вероятности f(x) и значения функции распределения F(x) любой случайной величины, распределенной по нормальному закону, если известны значения ее центра распределения mx и параметра σ.

Если случайная величина х принимает значения лишь в пределах некоторого конечного интервала от x1, до x2 с постоянной плотностью вероятностей (рис. 3), то такое распределение называется равномерным и описывается соотношениями

 
 

 

Рис. 3. Равномерное распределение случайной величины

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 576; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.