КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Валеология лекция № 8
ВЫВОД Расчет 1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что p2 = p3, получим: (1) 2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что p4 = p5, получим: (2) 3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при p6 = p7: (3) 4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при p 8 = p 9, получим: (4) 5. Элементы 10 и 11 образуют параллельное соединение. Заменяем их элементом Е, причем, так как p 10 = p 11 = p 8, то (5) 6. Элементы 12, 13, 14 и 15 образуют соединение «2 из 4», которое заменяем элементом F. Так как p 12 = p 13 = p 14 = p 15, то для определения вероятности безотказной работы элемента F можно воспользоваться выражением, в основе которого лежит формула биноминального распределения (биноминальному распределению подчиняется дискретная случайная величина k – число появлений некоторого события в серии из n опытов, если в отдельном опыте вероятность появления события составляет p). где – биноминальный коэффициент, называемый «числом сочетаний по k из n» (т. е. сколькими разными способами можно реализовать ситуацию k из n). . Поскольку для отказа системы «m из n» достаточно, чтобы количество исправных элементов было меньше m, вероятность отказа может быть найдена по теореме сложения вероятностей для k = 0, 1, …, (m – 1): Аналогичным образом можно найти вероятность безотказной работы как сумму для k = m, m + 1, …, n: . В данном конкретном случае, при n = 4 и m = 2, вероятность безотказной работы элемента F определится выражением:
7. Преобразованная схема изображена на рис. 2.
Рис. 2 8. Элементы А, В, С, D и Е (рис. 2) образуют мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом минимальных путей. Логическая схема мостиковой системы по методу минимальных путей приведена на рис. 3
Система, изображенная на рис. 3 работоспособна до тех пор, пока работоспособны элементы А и D или – B и E, или – A, C и E, или – B, C и D. Таким образом, вероятность работы квазиэлемента G можно определить по формуле: (7) 9. После преобразования схема примет вид, изображенный на рис. 4.
Рис. 4
10. В преобразованной схеме (рис. 4) элементы 1, G, и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы определяется выражением: (8) 11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 1) подчиняются экспоненциальному закону: (9) 12. Результаты расчетов вероятностей безотказной работы элементов 1 – 15 исходной схемы по формуле (9) для наработки до 3·106 часов представлены в табл. 1. Таблица 1
13. Результаты расчетов вероятностей безотказной работы квазиэлементов А, В, С, D, Е, F и G по формулам (1) – (7) и также представлены в табл. 1. 14. На рис. 5 представлен график зависимости вероятности безотказной работы системы Р от времени (наработки) t.
Рис. 5
15. По графику (рис. 5, кривая Р) находим для γ = 50% (Р = 0.5) γ-процентную наработку системы t = 1,9·106 ч. 16. Проверочный расчет при t = 1,9·106 ч показывает (табл. 1), что 17. По условиям задания находим время, превышающее в 1,5 раза время, соответствующее вероятности безотказной работы, равное 0,5 (P γ = 0,5): . (10) = 1,5·1,9·106 = 2,85·106 ч. 18. Расчет показывает (табл. 1), что при = 2,85·106 ч для элементов преобразованной схемы (рис. 4) p1 ( ) = 0,9972, pG ( ) = 0,9955 и pF ( ) = 0,2458. Следовательно, из трех последовательно соединенных элементов минимальное значение вероятности безотказной работы имеет элемент F (система «2 из 4» 19. Для того чтобы при = 2.85 × 106 ч система в целом имела вероятность безотказной работы P’ = 0,5, надо найти необходимую вероятность безотказной работы элемента F. Так как где – необходимая вероятность безотказной работы элемента F, то (11) 20. Для элемента F системы «2 из 4» резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов достаточно сложно, так как число элементов должно быть целым и функция = f(n) дискретна. 21. Для повышения надежности системы «2 из 4» добавляем к ней элементы, идентичные по надежности исходным элементам 12 – 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения: - добавляем элемент 16, получаем систему «2 из 5»:
- добавляем элемент 17, получаем систему «2 из 6»:
- добавляем элемент 18, получаем систему «2 из 7»:
22. Таким образом, для повышения надежности до требуемого уровня, необходимо в исходной схеме (рис. 1) систему «2 из 4» достроить элементами 16, 17 и 18 до системы «2 из 7» (рис. 6). 23. Результаты расчетов вероятностей безотказной работы квазиэлемента «F» («2 из 7») и системы в целом Р’ представлены в табл. 1. 24. Расчеты показывают, что при t’ = 2,85×106 ч, Р’ = 0,5272 > 0,5, что соответствует условию задания.
1. По данным расчета вероятности безотказной работы системы от времени построен график P(t). 2. По графику найдено время, соответствующее 50% g-процентному ресурсу системы (t = 1,9 × 106 ч). 3. Для увеличения наработки системы в 1,5 раза при 50% g -процентном ресурсе системы предложено нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18. 4. Рассчитана вероятность безотказной работы системы с повышенной надежностью от времени, построен график P’(t) системы с повышенной надежностью, на графике (рис. 7) показано время (t’ = 2,85 × 106 ч) соответствующее 50% g -процентному ресурсу.
Таблица 2 Численные значения параметров к заданию
Продолжение табл. 2
Дата добавления: 2015-04-30; Просмотров: 697; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |