Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Щелевидное соединение (нексус)




Адгезивный поясок

Десмосомы

В области десмосомы плазмолеммы утолщены с внутренней (цитоплазматической) стороны - за счёт белков десмоплакинов. Отсюда в цитоплазму отходят в виде пучка тонкие нити (промежуточные филаменты цитоскелета. В эпителии они образованы белком кератином. Пространство между плазмолеммами заполнено утолщённым гликокаликсом, который пронизан сцепляющими белками - десмоглеинами, образующими фибриллоподобные структуры и дисковидное утолщение посередине. Характерны для клеток покровного эпителия

По структуре данный контакт похож на десмосомный, но имеет форму ленты, опоясывающей клетку, утолщения со стороны цитоплазмы образованы белком винкулином (а не десмоплакинами), отходящие в цитоплазму нити - тонкие (а не промежуточные) филаменты из белка актина. Характерны для однослойных эпителиев.

III. Контакты запирающего типа ( плотные соединения )

Плотное соединение (запирающая зона, или zona occludens) образовано путем взаимодействия белков плазмолеммы двух контактирующих клеток. Такой тип характерен для железистой эпителиальной ткани.

IV. Контакты коммуникационного типа ( нексус, синапс )

В области нексуса (длиной 0,5 – 3 мкм) плазмолеммы сближаются на расстояние 2 нм и пронизываются многочисленными белковыми каналами (коннексонами), связывающими содержимое соседних клеток. Через эти каналы (диаметром 2 нм) могут диффундировать ионы и небольшие молекулы. Характерно для мышечных тканей.

Синапсы - это области передачи сигнала от одной возбудимой клетки другой. В синапсе различают пресинаптическую мембрану (принадлежащую одной клетке),синаптическующель и постсинаптическую мембрану (ПоМ) (часть плазмолеммы другой клетки). Обычно сигнал передаётся химическим веществом - медиатором, воздействующим на специфические рецепторы в ПоМ. Характерны для нервной ткани.

Мембранных органеллы:

Эндоплазматическая сеть (ЭПС) - впервые в эндоплазме фибробласта обнаружил Портер, делится на два типа - гранулярную и агранулярную (или гладкую).

Гранулярная ЭПС представляет собой совокупность плоских мешков (цистерн), вакуолей и трубочек, со стороны гиалоплазмы мембранная сеть покрыта рибосомами. В связи с этим, иногда используют другой термин - шероховатый ретикулум. На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

Функции гранулярной ЭПС:

1) синтез на рибосомах пептидных цепей экспортируемых, мембранных, лизосомных и т.п. белков,

2) изоляция этих белков от гиалоплазмы внутри мембранных полостей и концентрирование их здесь,

3) химическая модификация этих белков, а также связывание их с УВ или др. компонентами

4) их транспорт (внутри ЭПС и с помощью отдельных пузырьков).

Таким образом, наличие в клетке хорошо развитой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза - особенно в отношении секреторных белков.

Гладкая ЭПС в отличие от гранулярной лишена рибосом. Выполняет функции: синтез углеводов, липидов, стероидных гормонов (поэтому она хорошо выражена в клетках синтезирующих эти гормоны н-р, в коре надпочечников, гонад); дезинтоксикация ядовитых веществ (хорошо выражена в клетках печени, особенно после отравлений), депонирование ионов кальция в цистернах (в скелетной и сердечной мышечной ткани, после высвобождения стимулируют сокращение) и транспорт синтезированных веществ.

Комплекс Гольджи ( впервые эту органеллу обнаружил Камилло Гольджи в 1898 г в виде зачерненной серебром сети ) - это скопление 5-10 лежащих друг на друге плоских мембранных цистерн, от которых отшнуровываются мелкие пузырьки. Каждое такое скопление называется диктиосомой. В клетке может быть много диктиосом, соединённых с ЭПС и друг с другом цистернами и трубочками. По положению и функции, в диктиосомах различают 2 части: проксимальная (cis-) часть обращена к ЭПС, противоположная часть называется дистальной (trans-). При этом к проксимальной части мигрируют пузырьки от гранулярной ЭПС, обрабатываемые" в диктиосоме белки постепенно перемещаются от проксимальной части к дистальной и, наконец, от дистальной части отпочковываются секреторные пузырьки и первичные лизосомы.

Функции комплекса Гольджи:

1) сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,

2) продолжение химической модификации этих белков, н-р связывание с УВ.

3) сортировка данных белков на лизосомальные, мембранные и экспортные,

включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран).

Лизосомы (Дедюв в 1949 г.) - это мембранные пузырьки, содержащие ферменты гидролиза биополимеров, они образуются, отпочковываясь от цистерн комплекса Гольджи. Размеры - 0,2-0,5 мкм. Функция лизосом - внутриклеточное переваривание макромолекул. Причём, в лизосомах разрушаются как отдельные макромолекулы (белки, полисахориды и т.д.),
так и целые структуры - органеллы, микробные частицы и пр.

Различают 3 типа лизосом, которые представлены на электронограмме.

Первичные лизосомы - данные лизосомы имеют гомогенное содержимое.

Очевидно, это вновь образованные лизосомы с исходным раствором ферментов (около 50 различных гидролитических ферментов). Маркерный фермент - кислая фосфатаза.

Вторичные лизосомы образуются либо путём слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями,
либо путём захвата собственных макромолекул и органелл клетки. Поэтому вторичные лизосомы обычно больше по размеру первичных,
а их содержимое часто является неоднородным: например, в нём обнаруживаются плотные тельца. При наличии таковых говорят о фаголизосомах (гетерофагосомах) или аутофагосомах (если данные тельца - фрагменты собственных органелл клетки). При различных повреждениях клетки количество аутофагосом обычно возрастает.

Телолизосомы или остаточные (резидуальные) тельца, появляются тогда,

когда внутрилизосомальное переваривание не приводит к полному разрушению захваченных структур. При этом непереваренные остатки (фрагменты макромолекул, органелл и других частиц) уплотняются,
в них часто откладывается пигмент, а сама лизосома во многом теряет свою гидролитическую активность. В неделящихся клетках накопление телолизосом становится важным фактором старения. Так, с возрастом в клетках мозга, печени и в мышечных волокнах накапливаются телолизосомы с т.н. пигментом старения - липофусцином.

Пероксисомы видимо, как и лизосомы, образуются путём отшнуровывания мембранных пузырьков от цистерн комплекса Гольджи. Обнаруживаются в большом количестве в клетках печени. Однако пероксисомы содержат иной набор ферментов. В основном, это оксидазы аминокислот. Они катализируют прямое взаимодействие субстрата с кислородом причём, последний превращается в пероксид водорода, Н2О2 - опасный для клетки окислитель.

Поэтому пероксисомы содержат и каталазу - фермент, разрушающий Н 2 О 2 до воды и кислорода. Иногда в пероксисомах обнаруживается кристаллоподобная структура (2) - нуклеоид.

Митохондрии - (в конце прошлого века Альтман избирательно окрасил их кислым фуксином) имеют две мембраны - наружную и внутреннюю - из которых вторая образует многочисленные впячивания (кристы) в матрикс митохондрии. Митохондрии отличаются от прочих органелл ещё двумя интересными особенностями. Они содержат собственную ДНК - от 1 до 50 небольших одинаковых циклических молекул. Кроме того, митохондрии содержат собственные рибосомы, которые по размеру несколько меньше цитоплазматических рибосом и видны как мелкие гранулы. б) Данная система автономного синтеза белков обеспечивает образование примерно 5 % митохондриальных белков. Остальные белки митохондрий кодируются ядром и синтезируются цитоплазматическими рибосомами.

Главная функция митохондрий - завершение окислительного распада питательных веществ и образование за счёт выделяющейся при этом энергии АТФ - временного аккумулятора энергии в клетке.

2. Наиболее известны 2 процесса. –

а) Цикл Кребса - аэробное окисление веществ, конечными продуктами которого являются СО2, выходящий из клетки и НАДН - источник электроноа переносимых дыхательной цепью.

б) Окислительное фосфорилирование - образование АТФ в ходе переноса электронов (и протонов) на кислород.

Перенос электронов производится по цепи промежуточных переносчиков (т.н. дыхательной цепи), которая вмонтирована в кристы митохондрий.
Здесь же находится и система синтеза АТФ (АТФ-синтетаза, которая сопрягает окисление и фосфорилирование АДФ до АТФ). В результате сопряжения этих процессов, энергия, освобождаемая при окислении субстратов, хранится в макроэргических связях АТФ и в дальнейшем обеспечивает выполнение многочисленных функций клеток (н-р, мышечное сокращение). При заболеваниях в митохондриях происходит разобщение окисления и фосфорилирования, в результате энергия образуется в виде тепла.

в) Другие процессы, проходящие в митохондриях: синтез мочевины,
распад жирных кислот и пирувата до ацетил-КоА.

Вариабельность структуры митохондрий. В мышечных волокнах, где потребности в энергии особенно велики, митохондрии содержат
большое количество плотно расположенных пластинчатых (ламинарных) крист. В клетках печени количество крист в митохондриях значительно меньше. Наконец, в клетках коры надпочечников кристы имеют тубулярную структуру и выглядят на срезе как мелкие везикулы.

К немембранным органеллам относят:

Рибосомы -образуются в ядрышке ядра. В 1953 г. их обнаружил Паладе, в 1974 г. ему была присуждена нобелевская премия. Рибосомы состоят из малой и большой субъединиц, имеют размеры 25х20х20 нм, включают рибосомные РНК и рибосомные белки. Функция - синтез белка. Рибосомы могут либо располагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопления - полисомы. Если в клетке хорошо развита гр. ЭПС, то она синтезирует белки на экспорт (н-р, фибробласт), если в клетке слабо развита ЭПС и много свободных рибосом и полисом, то эта клетка малодифф-я и синтезирует белки для внутреннего употребления. Области цитоплазмы богатые рибосомами и гр. ЭПС дают + р-цию на РНК при окраске по Браше (РНК окрашив-ся пиронином в розовый цвет).

Филаменты - это фибриллярные структуры клетки. Существует 3 вида филаментов: 1) микрофиламенты - это тонкие нити, образованные глобулярным белком актином (диаметром 5-7 нм) образуют в клетках более или менее густую сеть. Как видно на снимке, основное направление пучков микрофиламентов (1) - вдоль длинной оси клетки. 2) второй тип филаментов называют миозиновыми филаментами (диаметр 10-25 нм) в мышечных клетках они тесно связаны с актиновыми филаментами, образуя мифибриллу. 3) филаменты третьего типа называются промежуточными их диаметр 7-10 нм. Не принимают непосредственного участия в механизмах сокращения, а могут влиять на форму клеток (скапливаясь в тех или иных местах и, образуя опору для органелл, часто собираются в пучки, образуя фибриллы). Промежуточные филаменты имеют тканеспецифическую природу. В эпителии они образованы белком кератином, в клетках соединительной ткани - виментином, в гладких мышечных клетках - десмином, в нервных клетках (приведённых на снимке) они называются нейрофиламентами и тоже образованы особым белком. По характеру белка, можно определить из какой ткани развилась опухоль (если в опухоли обнаружен кератин, то она имеет эпителиальную природу, если виметин - соединительнотканную).

Функции филаментов - 1) образуют цитоскелет 2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивание цитолеммы при фагоцитозе 3) участвуют в амебовидном движении клеток.

Микроворсинки -производные плазмолеммы клеток длиной около 1 мкм, диаметром около 100 нм, в их основе имеются пучки микрофиламентов. Функции: 1) увеличивают поверхность клеток 2) в кишечном и почечном эпителии выполняют функцию всасывания.

Микротрубочки тоже образуют в клетке густую сеть. Сеть
начинается от перинуклеарной области (от центриоли) и
радиально распространяется к плазмолемме. В том числе микротрубочки идут вдоль длинной оси отростков клеток.

Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе - 13 таких субъединиц, образуют кольцо. В неделящейся (интерфазной) клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки, а также играют роль направительных структур при транспорте веществ. При этом транспорт веществ идёт не через микротрубочки, а по перитубулярному пространству. В делящихся же клетках сеть микротрубочек перестраивается и формирует т.н. веретено деления. Оно связывает хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.

Центриоли. Кроме цитоскелета, микротрубочки образуют центриоли.
Состав каждой из них отражается формулой: (9 х 3) + 0. Центриоли располагаются парой - под прямым углом друг к другу. Такая структура называется диплосомой. Вокруг диплосом - т.н. центросфера, зона более светлой цитоплазмы в ней содержатся дополнительные микротрубочки. Вместе диплосома и центросфера называются клеточным центром. В неделящейся клетке - одна пара центриолей. Образование новых центриолей (при подготовке клетки к делению) происходит путём дупликации (удвоения): каждая центриоль выступает в качестве матрицы, перпендикулярно которой формируется (путём полимеризации тубулина) новая центриоль. Поэтому, как в ДНК, в каждой диплосоме одна центриоль является родительской, а вторая - дочерней.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 1635; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.