КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Точечная и интервальная оценка случайной погрешности. Доверительный интервал
Наличие в результатах промахов Проверка соответствия распределения результатов измерений нормальному закону В соответствии с правилами обработки результатов многократных измерений (ГОСТ 8.207) необходимо убедиться, что распределение результатов измерений подчиняется нормальному закону. Одним из распространенных методов такой проверки является графический метод – гистограмма. Для построения гистограммы требуется не менее 40…50 результатов измерений. Пример построения гистограммы рассмотрен в учебном пособии «Основы метрологии», в приложении 1 показан пример построения гистограммы в редакторе MS EXCEL с использованием пакета анализа. Иногда возникает необходимость проверить, является ли один из результатов Хi промахом, т.е. наблюдается ли значительное его отличие от всей совокупности данных. Для этого можно использовать правило «трех сигм» (n>25) или критерий Романовского (n<25). При использовании критерия Романовского вычисляют отношение и сравнивают с табличным критерием bт (приложение 2). Если b³bт, то результата Хi считают промахом и отбрасывают. При обработке результатов многократных измерений необходимо оценить значение случайной погрешности. Точечной оценкой случайной погрешности является среднее квадратическое отклонение (СКО), его также называют стандартным отклонением. СКО, вычисленное на основе небольшого числа измерений (n<25), называют выборочным (S). При большом числе измерений определяют генеральное СКО (s). (1) где m – математическое ожидание.
СКО среднего значения рассчитывают по формуле или (2) Точечная оценка результата измерений (, S) обычно является промежуточной, она является характеристикой МВИ. На основе СКО вычисляют интервальную оценку случайной погрешности e, которая представляет собой доверительную границу случайной погрешности (доверительную погрешность) по одной из нижеуказанных формул в соответствии с тем, каким значением стандартного отклонения располагают (генеральным s или выборочным S). или (3) где tp и tp,f – квантили (границы) нормального распределения и распределения Стьюдента, соответственно.
Значения tp,f определяют по числу степеней свободы f (f = n-1) и доверительной вероятности Р с помощью таблицы Стьюдента (приложение 3). Значение tP находят как аргумент функции нормированного нормального распределения Ф(t) по приложению 4, используя формулу Ф(tр) = (4) где Р – доверительная вероятность
Например, при заданной доверительной вероятности Р=0,95 Ф(tр)= , из приложения 4 определяем t0,95 =1,96. Интервальная оценка результата измерения представляет собой доверительный интервал ±e, внутри которого с заданной доверительной вероятностью находится истинное значение измеряемой величины[§]. Нижняя граница доверительного интервала: ХН= . Верхняя граница доверительного интервала: ХВ= . Отсюда доверительная погрешность равна (5) Интервальная оценка является непосредственно характеристикой результата измерений, ее используют для представления конечных результатов в технических измерениях.
Дата добавления: 2015-04-30; Просмотров: 2026; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |