Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. 1 Основная погрешность аналогового регистратора определяется его классом точности




1 Основная погрешность аналогового регистратора определяется его классом точности. Погрешность всех электроизмерительных приборов согласно стандарту нормируется с 25 %-м запасом на старение, т.е. фактически погрешность нового прибора составляет не больше, чем 0,8g. Следовательно, gрег =

=0,8´0,5=0,4 (%).

2 У потенциометра преобладающей является погрешность дискретности, обусловленная конечным числом витков обмотки датчика, по которым скользит подвижный контакт. Эта погрешность имеет равномерное распределение. В этом случае gрег =0,4 (%) можно считать половиной ширины этого равномерного распределения, и тогда %.

3 Погрешность от колебаний напряжения питания распределена по треугольному закону с принятыми пределами ±10 %. Поэтому максимальное значение этой погрешности %. Параметры этого распределения: энтропийный коэффициент k=2,02; эксцесс e=2,4; c=0,645.

       
   
 
 

 


4 Погрешность наводки распределена арксинусоидально. Энтропийный ко-эффициент k=1,11. Тогда

5 Погрешность смещения нуля потенциометра при колебании температуры является аддитивной, а закон ее распределения можно считать равномерным со средним значением 20°С и размахом ±12°С (так как температура в помещении меняется от 8 до 32°С). Максимальное значение этой погрешности при YТ= =±0,1 % /10°С составляет %, так как kэ для равномерного распределения равен .

6 Суммирование погрешностей сводится к вычислению приведенной погрешности при х = 0, которая складывается из всех аддитивных составляющих, и в конце диапазона, которая складывается из всех составляющих.

При х=0 погрешность будет складываться из трех составляющих:

sп=0,24 %, sТ=0,07 %, sнп=1,30 %.

Однако sт =0,07 % меньше sнп =1,3 % в 18,5 раз. Так как суммирование под корнем будет производиться над квадратами величин, то ее вклад в результат будет ничтожным. Отсюда ясно, что этой погрешностью можно пренебречь и опустить из дальнейшего рассмотрения. Тогда

.

Для расчета погрешности в конце диапазона к полученному значению sн надо добавить погрешность наводки sнав.= 0,45 %:

.

Для перехода к интервальной оценке в виде доверительного Dд = tSsS или энтропийного Dэ = kSsS значений необходимо знание не самого закона распределения результирующей погрешности, а лишь его одного числового параметра в виде квантильного множителя tS или энтропийного коэффициента kS.

Зависимости энтропийного коэффициента kS от соотношения суммируемых составляющих и их энтропийных коэффициентов могут быть представлены в виде семейства графиков (график 1 и график 2).

По оси абсцисс отложены значения относительного веса дисперсии второго из суммируемых распреде-лений в полной дисперсии , по оси ординат – значение энтропийного коэффициен-та kS образующейся при этом ком-позиции. Кривая 1 соответствует композиции двух нормальных рас-

пределений (kS = 2,066 для любых значений веса р); кривая 2 – композиции равномерно распределенной и нормально распределенной погрешностей; кри-вая 3 – композиции двух равномерных распределений; кривая 4 –композиции арксинусоидальной и равномерно распределенной погрешностей; кривая 5 –для двух арксинусоидально распределенных погрешностей.

Кривые 1-3 соответствуют сумми-рованию равномерного, треугольного и нормального распределений с дискретным двузначным распре-делением, а кривые 4-6 – суммированию нормального распределения соответственно с арксинусоидальным, равномерным и экспоненциальным.

 

       
   
 

 


При х=0 относительный вес sнп в полной дисперсии равен

. Так как sнп распределена по треугольному закону, а sп – по равномерному (кривая 2 на графике 2). Отсюда .

Тогда при х=0 доверительные границы

=1,25×1,3=1,63 (%)

в конце диапазона весовой коэффициент sнав. в полной дисперсии равен

Поскольку sнав. распределена по арксинусоидальному, а sн – по нормальному законам, воспользуемся кривой 4 на графике 2.

.

Тогда в конце диапазона доверительные границы =2,066×1,39=

=2,87 (%).

 




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.