Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Последовательный колебательный контур




Баланс мощности.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

(15)

В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:

, (16)

 

где знак “+” относится к индуктивным элементам , “-” – к емкостным .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

или

 

Проведем анализ работы электрической цепи с последовательным соединением элементов R, L, С.

Положим, что в этой задаче заданы величины R, L, С, частота f, напряжение U. Требуется определить ток в цепи и напряжение на элементах цепи. Из свойства последовательного соединения следует, что ток во всех элементах цепи одинаковый. Задача разбивается на ряд этапов.

1. Определение сопротивлений.

Реактивные сопротивления элементов L и С находим по формулам

XL = ωL, XC = 1 / ωC, ω = 2πf.

Полное сопротивление цепи равно

,

угол сдвига фаз равен

(2.42)

φ = arctg((XL - XC) / R),

2. Нахождение тока. Ток в цепи находится по закону Ома

I = U / Z, ψi = ψu + φ.

Фазы тока и напряжения отличаются на угол φ.

3. Расчет напряжений на элементах. Напряжения на элементах определяются по формулам

UR = I R, ψuR = ψi;

UL = I XL, ψuL = ψi + 90°;

UC = I XC, ψuC = ψi - 90°.

Для напряжений выполняется второй закон Кирхгофа в векторной форме.

Ú = ÚR + ÚL + ÚC.

4. Анализ расчетных данных. В зависимости от величин L и С в формуле (2.42) возможны следующие варианты: XL > XC; XL < XC; XL = XC.

Для варианта XL > XC угол φ > 0, UL > UC. Ток отстает от напряжения на угол φ. Цепь имеет активно-индуктивный характер. Векторная диаграмма напряжений имеет вид (рис. 2.16).

Для варианта XL < XC угол φ < 0, UL < UC. Ток опережает напряжение на угол φ. Цепь имеет активно-емкостный характер. Векторная диаграмма напряжений имеет вид (рис. 2.17).

Для варианта XL = XC угол φ = 0, UL = UC. Ток совпадает с напряжением. Цепь имеет активный характер. Полное сопротивление z=R наименьшее из всех возможных значений XL и XC. Векторная диаграмма напряжений имеет вид (рис. 2.18).

Этот режим называется резонанс напряжений (UL = UC). Напряжения на элементах UL и UC могут значительно превышать входное напряжение.




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 456; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.