КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Последовательный колебательный контур
Баланс мощности. Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.
В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:
где знак “+” относится к индуктивным элементам , “-” – к емкостным . Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности): или
Проведем анализ работы электрической цепи с последовательным соединением элементов R, L, С. Положим, что в этой задаче заданы величины R, L, С, частота f, напряжение U. Требуется определить ток в цепи и напряжение на элементах цепи. Из свойства последовательного соединения следует, что ток во всех элементах цепи одинаковый. Задача разбивается на ряд этапов. 1. Определение сопротивлений. Реактивные сопротивления элементов L и С находим по формулам XL = ωL, XC = 1 / ωC, ω = 2πf. Полное сопротивление цепи равно , угол сдвига фаз равен (2.42) φ = arctg((XL - XC) / R), 2. Нахождение тока. Ток в цепи находится по закону Ома I = U / Z, ψi = ψu + φ. Фазы тока и напряжения отличаются на угол φ. 3. Расчет напряжений на элементах. Напряжения на элементах определяются по формулам UR = I R, ψuR = ψi; UL = I XL, ψuL = ψi + 90°; UC = I XC, ψuC = ψi - 90°. Для напряжений выполняется второй закон Кирхгофа в векторной форме. Ú = ÚR + ÚL + ÚC. 4. Анализ расчетных данных. В зависимости от величин L и С в формуле (2.42) возможны следующие варианты: XL > XC; XL < XC; XL = XC. Для варианта XL > XC угол φ > 0, UL > UC. Ток отстает от напряжения на угол φ. Цепь имеет активно-индуктивный характер. Векторная диаграмма напряжений имеет вид (рис. 2.16). Для варианта XL < XC угол φ < 0, UL < UC. Ток опережает напряжение на угол φ. Цепь имеет активно-емкостный характер. Векторная диаграмма напряжений имеет вид (рис. 2.17). Для варианта XL = XC угол φ = 0, UL = UC. Ток совпадает с напряжением. Цепь имеет активный характер. Полное сопротивление z=R наименьшее из всех возможных значений XL и XC. Векторная диаграмма напряжений имеет вид (рис. 2.18). Этот режим называется резонанс напряжений (UL = UC). Напряжения на элементах UL и UC могут значительно превышать входное напряжение.
Дата добавления: 2015-05-06; Просмотров: 456; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |