Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Индуктивный фильтр




Катушка индуктивности (дроссель) включается последовательно с нагрузкой:

Работа фильтра основана на том, что в дросселе вследствие изменения тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току при его увеличении, и в сторону, совпадающую с током при его уменьшении. Таким образом, ток выравнивается, т.е. происходит сглаживание пульсаций. Индуктивность L выбирают исходя из условия , где Т - период переменной составляющей выпрямленного напряжения. Индуктивный фильтр работает более эффективно при больших нагрузках, т.е. малых значениях Rn. Коэффициент пульсаций в таком фильтре с уменьшением Rн уменьшается, отсюда и вытекает целесообразность его использования при больших токах нагрузки.

Недостатком индуктивного фильтра являются скачки обратного напряжения на диодах из-за возникающих ЭДС самоиндукции.

41. Температ стабилиз транзисторов. Режимы работы усилит каскадов. Транзистор, являясь полупроводниковым прибором, изменяет свои параметры при изменении рабочей температуры. Так, при повышении температуры, усилительные свойства транзистора ухудшаются. Обусловлено это рядом причин: при повышении температуры значительно увеличивается такой параметр транзистора, как обратный ток коллектора. Увеличение обратного тока коллектора транзистора приводит к значительному увеличению коллекторного тока и к смещению рабочей точки в сторону увеличения тока. При некоторой температуре коллекторный ток транзистора возрастает до такой величины, при которой транзистор перестает реагировать на слабый входной (базовый) ток. Попросту говоря - каскад перестает быть усилительным. Для того, чтобы расширить диапазон рабочих температур, необходимо применять дополнительные меры по температурной стабилизации рабочей точки транзистора. Самым простым способом является коллекторная стабилизация рабочего тока смещения. Рассмотренная нами выше схема каскада по схеме с общим эмиттером является схемой с фиксированным током базы. Ток коллектора в данной схеме зависит от параметров конкретного экземпляра транзистора и должен устанавливаться индивидуально при помощи подбора величины резистора R1. При смене транзистора начальный (при отсутствии сигнала) ток коллектора приходится подбирать заново, так как транзисторы даже одного типа имеют очень большой разброс статического коэффициента усиления тока базы (h21 Э).

Схема коллекторной стабилизации, обладая основными недостатками схемы с общим эмиттером (подбор резистора базового смещения под конкретный экземпляр транзистора), тем не менее позволяет расширить диапазон рабочих температур каскада. Как видим, данная схема отличается подключением резистора смещения не к источнику питания, а в коллекторную цепь. Благодаря такому включению удалось значительно (за счет применения отрицательной обратной связи) расширить диапазон рабочих температур каскада. При увеличении обратного тока коллектора транзистора, увеличивается ток коллектора, что вызывает более полное открывание транзистора и уменьшение коллекторного напряжения. Уменьшение коллекторного напряжения, в свою очередь, уменьшает напряжение начального смещения транзистора, что вызывает уменьшение коллекторного тока до приемлемой величины. Таким образом - осуществляется отрицательная обратная связь, которая несколько уменьшает усиление каскада, но зато позволяет увеличить максимальную рабочую температуру.

Более качественную стабилизацию температурных параметров каскада усиления можно осуществить, если несколько усложнить схему и применить так называемую "эмиттерную" температурную стабилизацию. Данная схема, несмотря на сложность, позволяет каскаду сохранять усилительные свойства в очень широком интервале рабочих температур. Кроме того, применение данной схемы стабилизации дает возможность замены транзисторов без последующей настройки.

42. Асинхрон машины. Двигатели с фазн и короткозамкнут ротором. Устр-во и принцип работы. Получ магн поля, вращ с синхрон частотой. Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

Достоинства:

· Лёгкость в изготовлении.

· Отсутствие механического контакта со статической частью машины.

Недостатки:

· Небольшой пусковой момент.

· Значительный пусковой ток.

Конструкция: Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п. Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл.град. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения тока в обмотке статора, поэтому его набирают из пластин электротехнической стали для обеспечения минимальных магнитных потерь. Основным методом сборки магнитопровода в пакет является шихтовка. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

Короткозамкнутый ротор: Короткозамкнутая обмотка ротора состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. Сердечники ротора и статора имеют зубчатую структуру. В машинах малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами. Для улучшения пусковых характеристик асинхронного электродвигателя с короткозамкнутым ротором, а именно, увеличения пускового момента и уменьшения пускового тока, на роторе применяют специальную форму паза. При этом внешняя от оси вращения часть паза ротора имеет меньшее сечение чем внутренняя. Это позволяет использовать эффект вытеснения тока, за счет которого увеличивается активное сопротивление обмотки ротора при больших скольжениях (при пуске).

Асинхронные двигатели с короткозамкнутым ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, и отсутствие электрического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание. При специальной конструкции ротора, когда вращается в воздушном зазоре только полый цилиндр из алюминия, можно достичь малой инерционности двигателя.

Фазный ротор: Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведенную на контактные кольца, вращающиеся вместе с валом машины. С помощью графитовых или металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора:

· включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы. Снижая пусковой ток, добиваются увеличения пускового момента до максимального значения (в первый момент времени). Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке или требующих плавного регулирования скорости.

· включают индуктивности (дроссели) в каждую фазу ротора. Сопротивление дросселей зависит от частоты протекающего тока, а, как известно, в роторе в первый момент пуска частота токов скольжения наибольшая. По мере раскрутки ротора частота индуцированных токов снижается, и вместе с нею снижаетсясопротивление дросселя. Индуктивное сопротивление в цепи фазного ротора позволяет автоматизировать процедуру запуска двигателя, а при необходимости — «подхватить» двигатель, у которого упали обороты из-за перегрузки. Индуктивность держит токи ротора на постоянном уровне.

· включают источник постоянного тока, получая таким образом синхронную машину.

Принцип действия: На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться.

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения n1 [об/мин] которого связана с частотой сети f [Гц] соотношением:

где P — число пар магнитных полюсов обмотки статора.

В зависимости от количества числа пар полюсов возможны следующие значения частот вращения магнитного поля статора, при частоте питающего напряжения 50 Гц:

Большинство двигателей имеют 1-3 пары полюсов, реже 4. Большее число полюсов используется очень редко, такие машины имеют низкий КПД и коэффициент мощности, однако позволяют очень плавно и медленно вращать ротор двигателя.

43. Частота вращ ротора АД. Скольжение при пуске и ХХ АД. Частота тока в роторе. Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой в обмотке ротора возникает ток. На проводники с током этой обмотки действуют электромагнитные силы. Если этот момент достаточен для преодоления сил трения, ротор приходит во вращение, и его установившаяся частота вращения n2 [об/мин] соответствует равенству электромагнитного момента, создаваемого нагрузкой на валу. Tаким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

Очевидно, что при двигательном режиме

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдёт в генераторный режим. В генераторном режиме работы скольжение . Для работы асинхронной машины в генераторном режиме требуется источник реактивной мощности, создающий магнитное поле. При отсутствии первоначального магнитного поля в обмотке статора поток создают с помощью постоянных магнитов, либо при активной нагрузке за счёт остаточной индукции машины и конденсаторов, параллельно подключенных к фазам обмотки статора.

Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. В режиме реального холостого хода s=0,01-0,08. В режиме идеального холостого хода n2=n1, следовательно s=0 (на самом деле этот режим недостижим, даже при допущении, что трение в подшипниках не создаёт свой момент нагрузки - сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора. При s=0 поле статора не пересекает обмотки ротора и не может индуцировать в нём ток, а значит не создаётся магнитное поле ротора.)

Можно силу тока в роторе определить отношением э.д. с. к полному сопротивлению, т. е




Поделиться с друзьями:


Дата добавления: 2015-05-06; Просмотров: 3100; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.