КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение прямой проходящей через две точки. Параметрические уравнения прямой
Уравнение прямой, проходящей через две различные точки (х 1, у 1) и (х 2, у 2 ): Параметрическое уравнение прямой, проходящей через точку (х 0 , у 0) и параллельной направляющему вектору прямой (a, b): 20. Прямая как линия пересечения двух плоскостей. Пусть заданы две плоскостиАх+ Ву+ Сz+ D = 0 и Eх+ Fу+ Gz+ H = 0, причём их нормальные векторы неколлинеарны, тогда система уравнений описывает прямую – линию пересечения этих плоскостей. при условии, что не имеет место равенство
21 Взаимное расположение двух прямых в пространстве.
22. Вычисление углов в пространстве Понятие о скалярном произведении позволяет достаточно просто определять углы между прямыми в пространстве. Действительно, пусть в пространстве заданы две прямые с направляющими векторами и Пусть угол между этими прямыми равен φ. Тогда угол между векторами может быть равен φ или 180° – φ в зависимости от того, как направлены эти вектора. Однако в любом случае модуль скалярного произведения этих векторов равен Отсюда следует, что так как Итак, угол между двумя прямыми может быть найден через координаты направляющих векторов так Покажем теперь, как можно вычислять угол между прямой и плоскостью. Поскольку угол между прямой и плоскостью есть угол между этой прямой и ее проекцией на эту плоскость, сведем данную задачу к предыдущей. Заметим, что угол между направляющим вектором рассматриваемой прямой и нормальным вектором равен
Этот угол уже легко вычисляется: Значит угол между прямой и плоскостью равен Найдем, наконец, угол между двумя плоскостями, если известны их нормальные векторы. Несложно сообразить, что угол между плоскостями равен углу между их нормалями. Значит, угол между плоскостями может быть найден по формуле:
Дата добавления: 2015-04-23; Просмотров: 1084; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |