КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Структурные средние величины. В условиях недостаточности средних используют структурные средние величины — моду и медиану
В условиях недостаточности средних используют структурные средние величины — моду и медиану. Мода - это варианта с наибольшей частотой. Медианта - это варианта, которая лежит в середине ряда распределения и делит совокупность пополам. Правило выбора средней: средняя арифметическая применяется тогда когда имеются варианты и абсолютное число единиц вариантов и их удельный вес. Средняя гармоническая применяется когда имеются варианты, а в качестве веса - производная величина. Выбор вида средней зависит от исходной информации.
Медиана в интервальных вариационных рядах рассчитывается по формуле:
где х0 — нижняя граница медианного интервала (накопленная частота которого превышает половину общей суммы частот);
— величина медианного интервала;
— накопленная частота интервала, предшествующего медианному;
— частота медианного интервала.
Также в интервальных вариационных рядах медиана может быть найдена с помощью кумуляты как значение признака, для которого
или. (1.18)
Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:.
Модой (Мо) вариационного ряда называется вариант, которому соответствует наибольшая частота.
Для вычисления моды в интервальном ряду сначала находится модальный интервал, имеющий наибольшую частоту (или наибольшую плотность распределения — отношение частоты интервала к его величине ni/hi — в интервальном ряду с неравными интервалами), а значение моды определяется линейной интерполяцией:
, (1.19)
где хо — нижняя граница модального интервала;
— величина модального интервала;
,, — частота ni (в интервальном ряду с равными интервалами) или плотность распределения ni/hi (в интервальном ряду с неравными интервалами) модального, до и послемодального интервала.
Мода так же, как и медиана обладает определенной устойчивостью к вариации признака. Если в совокупности первичных признаков нет повторяющихся значений, то для определения моды проводят группировку.
Графически отобразить моду по гистограмме можно следующим образом: нужно взять столбец, имеющий наибольшую высоту, и из его левого верхнего угла провести отрезок в угол последующего столбца, а из правого угла — в верхний правый угол предыдущего столбца, абсцисса точки пересечения отрезков и будет соответствовать модальному значению признака в изучаемой совокупности. Медиану приближенно можно определить графически - по кумуляте. Для этого высоту наибольшей ординаты, которая соответствует общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения и есть медиана (рисунок 1.1) Мода и медиана, в отличие от степенных средних, являются конкретными характеристиками ряда. Медиана — характеризует центр, вычисляется проще и не чувствительна к концам интервала. Мода — наиболее вероятное значение в изучаемой совокупности (например, наиболее возможные результаты).
Дата добавления: 2015-04-24; Просмотров: 443; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |