Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные законы геометрической оптики




Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств

В основе геометрической оптики лежат несколько простых эмпирических законов:

1. Закон прямолинейного распространения света

2. Закон независимого распространения лучей

3. Закон отражения света

4. Закон преломления света (Закон Снелла)

5. Закон обратимости светового луча. Согласно нему луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество)систем лучей, то освещённости, создаваемые ими, складываются.

Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала, которое допускает также словесную интерпретацию в виде принципа Ферма, из которого и выводятся перечисленные выше законы.

Частным видом геометрической оптики является матричная оптика

 

 

15. Интерференция света — нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. При интерференции света происходит перераспределение энергии в пространстве.

Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол отражения, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.

 

16. Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину.

 

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

 

 

17. Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий.

Если свет представляет собой волновой процесс, то наряду с интерференцией должна наблюдаться и дифракция света. Ведь дифракция — огибание волнами краев препятствий — присуща любому волновому движению. Но наблюдать дифракцию света нелегко, так как волны отклоняются от прямолинейного распространения на заметные углы только на препятствиях, размеры которых сравнимы с длиной волны, а длина световой волны очень мала.
Пропуская тонкий пучок света через маленькое отверстие, можно наблюдать нарушение света: светлое пятно на экране против отверстия будет иметь большие размеры, чем размер пучка.

 

Принцип Гюйгенса — Френеля — Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

ЗОНЫ ФРЕНЕЛЯ - участки, на к-рые разбивают поверхность фронта световой волны для упрощения вычислений при определении амплитуды волны в заданной точке пр-ва.

Метод Зоны Френеля позволяет быстро и наглядно составлять качественное, а иногда и довольно точное количественное представление о результате дифракции волн при различных сложных условиях их распространения. Он применяется поэтому не только в оптике, но и при изучении распространения радио- и звуковых волн для определения эффективной трассы «луча», идущего от передатчика к приёмнику; для выяснения того, будут ли при данных условиях играть роль дифракционные явления; для ориентировки в вопросах о направленности излучения, фокусировке волн и т.п.

 

 

18. Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики.

Наибольший практический интерес представляют дифракционные явления, наблюдаемые при падении на экран или отверстие в экране параллельного пучка света. В результате дифракции пучок утрачивает параллельность, то есть появляется свет, распространяющийся в направлениях, отличных от первоначального. Распределение его интенсивности на очень большом расстоянии от экрана соответствует дифракции Фраунгофера. Волны, возникающие в результате ограничения падающей плоской волны при прохождении сквозь отверстие на экране, называются дифрагировавшими, а нормали к их волновым поверхностям – дифрагировавшими лучами.

Дифрагировавшие лучи не существуют в рамках геометрической оптики. Возникновение дифрагировавших волн при прохождении через отверстие означает, что волна с ограниченной площадью поперечного сечения не может быть строго плоской.

Рис. 3.17

 

 

19. Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность.

Дифракционная решётка представляет собой периодическую структуру: штрихи с определённым и постоянным для данной решётки профилем повторяются через строго одинаковый промежуток d, называется периодом Дифракционная решётка (рис.). В Дифракционная решётка происходит дифракция света. Основное свойство Дифракционная решётка - способность разлагать падающий на неё пучок света по длинам волн, т. е. в спектр, что используется в спектральных приборах. Если штрихи нанесены на плоскую поверхность, то Дифракционная решётка называются плоскими, если на вогнутую (обычно сферическую) поверхность - вогнутыми. Различают отражательные и прозрачные Дифракционная решётка У отражательных штрихи наносятся на зеркальную (обычно металлическую) поверхность и наблюдение ведётся в отражённом свете. У прозрачных штрихи наносятся на поверхность прозрачной (обычно стеклянной) пластинки (или вырезаются в виде узких щелей в непрозрачном экране) и наблюдение ведётся в проходящем свете. В современных спектральных приборах применяются главным образом отражательные

Спектральными приборами называются оптические приборы, в которых осуществляется разложение электромагнитного излучения оптического диапазона на монохроматические составляющие. Такие приборы используются для качественного и количественного исследования спектрального состава света, излучаемого, поглощаемого, отражаемого или рассеиваемого веществом. Эти исследования позволяют судить о свойствах вещества, его химическом составе и характере физических процессов, связанных с излучением или взаимодействием света с веществом. Спектральные приборы применяются также для получения излучения заданного спектрального состава.

 

20. ЕСТЕСТВЕННЫЙ СВЕТ - совокупность некогерентных световых волн со всеми возможными направлениями напряжённости эл.-магн. поля, быстро и беспорядочно сменяющими друг друга. При этом все направления колебаний, перпендикулярные к световым лучам, равновероятны, т. е. Е. с. обладает осевой симметрией относительно направления распространения.

ПОЛЯРИЗОВАННЫЙ СВЕТ, световые волны, электромагнитные колебания которых распространяются только в одном направлении. Обычный СВЕТ распространяется во всех направлениях, перпендикулярных к направлению его движения.

Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где I 0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора, ka — коэффициент прозрачности поляризатора.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.

 

21. Двойно́е лучепреломле́ние — эффект расщепления в анизотропных средах луча света на две составляющие. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным, второй же отклоняется в сторону, нарушая обычный закон преломления света, и называется необыкновенным

 

 

22. Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля..

Примером теплового излучения является свет от лампы накаливания.

Основными количественными характеристиками теплового излучения являются:

- энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени. Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

- спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): Rλ,T = f(λ, T).

ЗАКОН КИРХГОФА-Кирхгоф, опираясь на второй закон термодинамики установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры

23. Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры.

Закон Стефана - Больцмана, определяя зависимость Re от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции rl,Tот длины волны l при различных температурах следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости rl,Tот l и осью абсцисс, пропорциональна энергетической светимости Re, черного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.

 

 

 

24. Гипо́теза Пла́нка — заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

h=6,63.10-34 Дж.с—постоянная Планка.

— элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический зарядфотона также равен нулю.

Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества

(скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы.

При упругом столкновении фотон меняет направление движения — свет рассеивается. При

неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц

вещества — так происходит поглощение света.

Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, ней-

троном и некоторыми другими частицами — причислен к разряду элементарных частиц.

 

 

25. Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν < ν0, то фотоэффект уже не происходит.

26. Постулаты Бора — основные допущения, сформулированные для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов и квантового характера испускания и поглощения света.

Первый постулат Бора: Атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.

Второй постулат Бора: При переходе атома из одного квантового сотояния в другое атом испускает или поглощает квант электромагнитного излучения (фотон). Энергия излученного или поглощенного фотона равна разности энергий стационарных состояний:

h ν = EnEm,



Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 2504; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.