КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Потенциальность электростатического поля. Потенциал поля точечного заряда
Напряжённость поля точечного заряда Q известна в любой точке пространства: . Так как это сферически симметричное поле, его потенциал будет меняться только как функция r. Поэтому связь напряжённости и потенциала можно упростить и записать так: . Или: .Разность потенциалов двух точек поля: Полученный результат позволяет сделать два вывода: 1. Потенциал произвольной точки поля точечного заряда обратно пропорционален расстоянию от заряда до рассматриваемой точки: . 2. Потенциал бесконечно удалённой точки (r 2 ® ¥) равен нулю j¥ = 0. Множество точек одинакового потенциала образует в пространстве сферические эквипотенциальные поверхности.
5. Работа сил электрического поля по переносу заряда. Разность потенциалов. Теорема о циркуляции электростатического поля. Электрический потенциал. Связь между напряжённостью электростатического поля и потенциалом. Существуют две характеристики электрического поля. В любой точке пространства поле можно задать либо вектором напряжённости — это «силовая» характеристика поля, либо потенциалом — это его энергетическая характеристика. Потенциал — энергетическая характеристика поля, связанная и с энергией заряда в электростатическом поле и с работой, совершаемой электрической силой при перемещении заряда. Вспомним, что силы, работа которых не зависит от вида траектории и определяется только положением её начальной и конечной точек, называются консервативными. Мы пришли к выводу, что кулоновская сила консервативна. Впрочем, ничего неожиданного в этом выводе нет: ведь сила взаимодействия двух точечных зарядов может быть отнесена к классу центральных сил, а все центральные силы, как было установлено в механике, консервативны. Итак, вычислим работу кулоновской силы при перемещении заряда q из точки 1 в положение 2 (по любой траектории):
Энергия единичного (q = 1) точечного заряда уже не будет связана с величиной этого пробного заряда q и может быть принята в качестве энергетической характеристики данной точки электростатического поля: . Эта энергетическая характеристика поля получила название потенциал — j. Потенциал произвольной точки электростатического поля равен энергии единичного положительного заряда, помещённого в эту точку. Потенциал некоторой точки электростатического поля равен работе, совершаемой электрической силой при эвакуации единичного положительного заряда из этой точки в бесконечность: . Потенциал поля, созданного системой точечных зарядов, равен алгебраической сумме потенциалов, создаваемых в рассматриваемой точке каждым из зарядов в отдельности: . - «принцип суперпозиции для потенциала» Разность потенциалов двух точек поля равна работе, совершаемой электрической силой при перемещении единичного заряда из первой точки во вторую: Потенциал и напряжённость — две локальные характеристики электростатического поля. То есть, это две характеристики — энергетическая и силовая — одной и той же точки поля. Разумно предположить, что между ними должна существовать однозначная связь. напряжённость электростатического поля равна градиенту потенциала с обратным знаком. . Здесь векторный оператор «градиент» grad = . Так как это сферически симметричное поле, его потенциал будет меняться только как функция r. Поэтому связь напряжённости и потенциала можно упростить и записать так: . Теорема о циркуляции электростатического поля. Интеграл по замкнутому контуру = называется циркуляцией вектора напряжённости электростатического поля по контуру L. По своей сути циркуляция вектора напряжённости — это работа электростатического поля, совершаемая при перемещении по замкнутому контуру единичного положительного заряда. Так как речь идёт о работе консервативной силы, то на замкнутой траектории она равна нулю: . Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.
Дата добавления: 2015-04-24; Просмотров: 1182; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |