Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ред.] Віхи розвитку математичного аналізу




Ред.] Передумови появи математичного аналізу

До кінця XVII ст. склалася ситуація коли в математиці було накопичено знання про розв'язки деяких важливих класів задач (наприклад, задачі про обчислення площ і об'ємів нестандартних фігур, задача проведення дотичних до кривих), а також з'явилися методи розв'язання різних часткових випадків. Виявилося, що ці задачі тісно пов'язані з задачами опису деякого (не обов'язково рівномірного) механічного руху, й зокрема обчислення його миттєвих характеристик (швидкості, прискорення в будь-який момент часу), а також знаходження пройденого шляху при русі, що відбувається з заданою змінною швидкістю. Розв'язок цих задач був необхідним для подальшого розвитку фізики, астрономії, техніки. До середини XVII ст. в працях Рене Декарта і П'єра Ферма було закладено основи аналітичного методу координат (так званої аналітичної геометрії), які дозволили сформулювати різноманітні за своїм походженням геометричні і фізичні задачі загальною мовою чисел і числових залежностей (числових функцій).

Всі ці обставини призвели до того, що наприкінці XVII ст. двом ученим Ісааку Ньютону і Готфріду Лейбніцу, незалежно один від одного, вдалося створити математичний апарат для розв'язку вказаних задач. У своїх працях ці вчені зібрали й узагальнили окремі результати попередників починаючи від Архімеда і закінчуючи своїми сучасниками, такими як: Бонавентура Кавальєрі, Блез Паскаль, Джеймс Грегорі, Ісаак Барроу. Цей апарат і склав основу математичного аналізу — нового розділу математики, який вивчає різні динамічні процеси, тобто взаємозв'язки змінних величин, які математики називають функціональними залежностями чи функціями.

Поняття функції запровадив у XVIII ст. Леонард Ейлер[3]. Упродовж XVIII ст. були розвинуті різноманітні методи аналізу, що збагатили диференціальне та інтегральне числення: варіаційне числення, теорія рядів, теорія звичайних диференціальних рівнянь.

Аналіз функцій дійсної змінної почав набирати ознак окремого розділу математики, коли Бернард Больцано дав сучасне означення неперервності у 1816[4], хоча роботи Больцано не отримали широкої відомості до 1870-их. З 1821 Огюстен Коші почав формувати міцне логічне підґрунтя під математичним аналізом, формулюючи його через поняття нескінченно малих. Йому також належать поняття фундаментальної послідовності і основи аналізу комплексної змінної. Симеон Пуасон, Жозеф Ліувіль, Жозеф Фур'є та інші вивчали диференціальні рівняння і гармонічний аналіз. Завдяки внеску цих та інших математиків, таких як Карл Веєрштрас розвинувся епсилонний підхід, який є основою сучасного математичного аналізу. Зразком такого підходу є означення границі функції через та .

Усередині XIX століття Бернгард Ріман розвинув теорію інтегрування. Надалі математиків почало бентежити те, що вони припускають існування континууму дійсних чисел без доказу. Розв'язуючи цю проблему, Ріхард Дедекінд сконструював означення ірраціонального числа як переріз Дедекінда, таким чином заповнивши «прогалини» в раціональних числах і утворивши повний метричний простір: континуум дійсних чисел. Приблизно тоді ж спроби уточнити теореми інтегрування за Ріманом призвели до вивчення розривів дійсних функцій.

Почали виникати математичні чудовиська, такі як ніде не неперервна функція Діріхле, неперервна, але ніде не диференційована функція Веєрштраса, криві, що повністю заповнюють площину на кшталт кривої Пеано. Розв'язуючи проблеми з такими функціями, Каміль Жордан побудував теорію міри Жордана, а Георг Кантор розвинув інтуїтивну теорію множин. На початку 20 століття математичний аналіз був формалізований теорією множин. Анрі Лебег розв'язав проблему міри, а Давид Гільберт запровадив гільбертів простір. Виникла ідея нормованого векторного простору, і в 1920-их Стефан Банах започаткував функціональний аналіз.




Поделиться с друзьями:


Дата добавления: 2015-05-24; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.