КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные законы алгебры Буля
Как уже отмечалось, в булевой алгебре все операции осуществляются с логическими переменными и подчиняются законам алгебры логики. Опишем некоторые из них. а) Переместительный закон а + в = в + а; ав = ваб) Сочетательный закон (а + в) + с = а + (в + с); (ав)с = а(вс)в) Распределительный закон а(в + с) = ав + ас; а + вс = (а + в)(а + с)г) Закон поглощения а + ав = а(1 + в) = а; а(a + в) = а + ав = ад) Закон склеивания ав + ав' = а; (а + в)(а + в') = ае) Идемпотентный закон a + a = a; a & a = aё) Правила де Моргана Эти правила справедливы для любого числа аргументов. а + в + с +.... + z = (а'в'с'...z')' авс... = (а' + в' + с' +... + z')'Эти правила можно описать таким алгоритмом. Для перехода от логической суммы к логическому произведению необходимо проделать следующие операции:
Аналогично выполняется переход от логического произведения к логической сумме.В инженерной практике используются лишь правила де Моргана и закон склеивания(в виде карт Карно). Кроме основных функций И, ИЛИ, НЕ в алгебре логики часто используются функции равнозначности (эквивалентности) и неравнозначности (сумма по модулю 2). Для обозначения этих функций используются следующие знаки: равнозначность - ~, сумма по модулю 2 - . Содержание этих функций отражено в таблице.
Из таблицы получаем: f4 = а ~ в = а'в' + авf5 = a в = а'в + ав'Из таблицы видно, что f4 = f5' или f5 = f4'Таким образом,а'в' + ав = (ав' + а'в)', или а~в = (а в)', а в = (а~в)'
Дата добавления: 2015-05-08; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |