КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние в последующий момент — следствие
Квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени t в области с координатами х и x+dx, у и y+dy, z и z+dz. Дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая. немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая Y(х, у, z, t). Эту величину называют также волновой функцией (или Y-функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:
(|Y|2=YY*, Y * — функция, комплексно сопряженная с Y).
описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер:
Вероятность нахождения частицы в элементе объемом d V равна Величина .. .. (квадрат модуля Y-функции) имеет смысл плотности вероятности, т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. физический смысл имеет не сама Y-функция, а квадрат ее модуля |Y|2, которым задается интенсивность волн де Бройля. Вероятность найти частицу в момент времени t в конечном объеме V, согласно теореме сложения вероятностей, равна Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком). Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1, Y2,..., Y n,... то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций: где С n (n =1, 2,...)—произвольные, вообще говоря, комплексные числа.
Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. где ћ = h /(2p), т— масса частицы, D—оператор Лапласа i — мнимая единица, U (х, у, z, t) — потенциальная функция частицы в силовом поле, в котором она движется, Y (х, у, z, t) — искомая волновая функция частицы. Уравнение справедливо для любой частицы (со спином, равным 0; движущейся с малой (v <<с) скоростью Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной 2) производные должны быть непрерывны; 3) функция |Y|2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей
Принцип причинности в квантовой механике классическая физика основывается на следующем понимании причинности: В квантовой механике состояние микрообъекта полностью определяется волновой функцией Y(x, у, z, t), квадрат модуля которой |Y (x, у, z, t)|2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z. В свою очередь, волновая функция Y(х, у, z, t) удовлетворяет уравнению Шредингера содержащему первую производную функции Y по времени. Это же означает, что задание функции Y0 (для момента времени t 0) определяет ее значение в последующие моменты. в квантовой механике начальное состояние Y0 есть причина, а состояние Y в последующий момент — следствие.
Движение свободной частицы Свободная частица — частица, движущаяся в отсутствие внешних полей. Тогда полная энергия частицы совпадает с ее кинетической энергией. В таком случае уравнение Шредингера для стационарных состояний примет вид частным решением уравнения является функция y (х) = Аеikx, где А = const и k = const, с собственным значением энергии Функция представляет собой только координатную часть волновой функции Y(x, t).
. все положения свободной частицы в пространстве являются равновероятными.
Линейный гармонический осциллятор в квантовой механике Линейный гармонический осциллятор — система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории Пружинный, физический и математический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора где w 0 — собственная частота колебаний осциллятора, т — масса частицы.
Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е В точках с координатами ± x max полная энергия Е равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (– x max, + x max). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Гармонический осциллятор в квантовой механике — квантовый осциллятор — описывается уравнением Шредингера
где Е — полная энергия осциллятора. уравнение решается только при собственных значениях энергии энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена снизу минимальным значением энергии E 0=1/2ћw0 . Существование минимальной энергии — она называется энергией нулевых колебаний — является типичной для квантовых систем и представляет собой следствие соотношения неопределенностей. классическая физика приводит к выводу, что при Т =0 энергия колебательного движения атомов кристалла должна обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное колебаниями атомов. Однако эксперимент показывает, что интенсивность рассеяния света при понижении температуры не равна нулю, а стремится к некоторому предельному значению, указывающему на то, что при Т ®0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области | x| £ x max
Элементы современной физики атомов и молекул Атом водорода в квантовой механике
Состояние электрона в атоме водорода описывается волновой функцией y, удовлетворяющей стационарному уравнению Шредингера где т — масса электрона, Е — полная энергия электрона в атоме.
Дата добавления: 2015-05-09; Просмотров: 524; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |