Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Невозможно экспериментально различить тож­дественные частицы. 2 страница




Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т. д.).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны (рис. 316). Действительно, для переброса электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны D E. При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия, затраченная на образование пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запрещенной зоны, идет на переброс электрона и такая же энергия затрачивается на образование дырки, то начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от кото­рой происходит возбуждение электронов и дырок.

Вывод о расположении уровня Ферми в середине запрещенной зоны собственного полупро­водника может быть подтвержден математическими выкладками. В физике твердого тела до­казывается, что концентрация электронов в зоне проводимости

(242.2)

где E 2 энергия, соответствующая дну зоны проводимости (рис. 316), ЕF энергия Ферми, Т — термодинамическая температура, С 1 постоянная, зависящая от температуры и эффектив­ной массы электрона проводимости. Эффективная масса — величина, имеющая размерность массы и характеризующая динамические свойства квазичастиц — электронов проводимости и ды­рок. Введение в зонную теорию эффективной массы электрона проводимости позволяет, с одной стороны, учитывать действие на электроны проводимости не только внешнего поля, но и внутрен­него периодического поля кристалла, а с другой стороны, абстрагируясь от взаимодействия электронов проводимости с решеткой, рассматривать их движение во внешнем поле как движение свободных частиц.

Концентрация дырок в валентной зоне

(242.3)

где С 2 — постоянная, зависящая от температуры и эффективной массы дырки, Е 1 энергия, соответствующая верхней границе валентной зоны. Энергия возбуждения в данном случае от­считывается вниз от уровня Ферми (рис. 316), поэтому величины в экспоненциальном множителе (242.3) имеют знак, обратный знаку экспоненциального множителя в (242.2). Так как для собствен­ного полупроводника пe=np (242.1), то

Если эффективные массы электронов и дырок равны (), то С 1 2 и, следовательно, (E 2 –EF) = =E 1 –EF, откуда

т. е. уровень Ферми в собственном полупроводнике действительно расположен в середине запре­щенной зоны.

Taк как для собственных полупроводников D E >> kT, то распределение Фер­ми — Дирака (235.2) переходит в распределение Максвелла — Больцмана. Положив в (236.2) E–EF» D E/ 2, получим

(242.4)

Количество электронов, переброшенных в зону проводимости, а следовательно, и ко­личество образовавшихся дырок пропорциональны á N(Е) ñ. Таким образом, удельная проводимость собственных полупроводников

(242.5)

где g 0 — постоянная, характерная для данного полупроводника.

Увеличение проводимости полупроводников с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается). С точки зрения зонной теории это обстоятельство объяснить довольно просто: с повышением температуры растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в проводимости. Поэтому удельная проводимость собственных полупроводников с повышением тем­пературы растет.

Если представить зависимость ln g от 1/ T, то для собственных полупроводни­ков — это прямая (рис. 317), по наклону которой можно определить ширину запрещен­ной зоны D Е, а по ее продолжению — g 0 (прямая отсекает на оси ординат отрезок, равный ln g 0).

Одним из наиболее широко распространенных полупроводниковых элементов явля­ется германий, имеющий решетку типа алмаза, в которой каждый атом связан ковалентными связями (см. § 71) с четырьмя ближайшими соседями. Упрощенная плоская схема расположения атомов в кристалле Ge дана на рис. 318, где каждая черточка обозначает связь, осуществляемую одним электроном. В идеальном кристалле при 0 К такая структура представляет собой диэлектрик, так как все валентные электроны участвуют в образовании связей и, следовательно, не участвуют в проводимости.

При повышении температуры (или под действием других внешних факторов) тепловые колебания решетки могут привести к разрыву некоторых валентных связей, в результате чего часть электронов отщепляется и они становятся свободными. В поки­нутом электроном месте возникает дырка (она изображена белым кружком), заполнить которую могут электроны из соседней пары. В результате дырка, так же как и освобо­дившийся электрон, будет двигаться по кристаллу. Движение электронов проводимо­сти и дырок в отсутствие электрического поля является хаотическим. Если же на кристалл наложить электрическое поле, то электроны начнут двигаться против поля, дырки— по полю, что приведет к возникновению собственной проводимости герма­ния, обусловленной как электронами, так и дырками.

В полупроводниках наряду с процессом генерации электронов и дырок идет процесс рекомбинации: электроны переходят из зоны проводимости в валентную зону, отдавая энергию решетке и испуская кванты электромагнитного излучения. В результате для каждой температуры устанавливается определенная равновесная концентрация элект­ронов и дырок, изменяющаяся с температурой согласно выражению (242.4).

§ 243. Примесная проводимость полупроводников

Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники — примесными полупроводниками. Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефек­тами типа избыточных атомов (по сравнению со стехиометрическим составом), тепло­выми (пустые узлы или атомы в междоузлиях) и механическими (трещины, дислокации и т. д.) дефектами. Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 106 раз.

Примесную проводимость полупроводников рассмотрим на примере Ge и Si, в которые вводятся атомы с валентностью, отличной от валентности основных атомов на единицу. Например, при замещении атома германия пятивалентным атомом мы­шьяка (рис. 319, а) один электрон не может образовать ковалентной связи, он оказыва­ется лишним и может быть легко при тепловых колебаниях решетки отщеплен от атома, т. е. стать свободным. Образование свободного электрона не сопровождается нарушением ковалентной связи; следовательно, в отличие от случая, рассмотренного в § 242, дырка не возникает. Избыточный положительный заряд, возникающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может.

С точки зрения зонной теории рассмотренный процесс можно представить следу­ющим образом (рис. 319, б). Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии D ED =0,013 эВ. Так как D ED < kT, то уже при обычных температурах энергия теплового движения достаточна для того, чтобы перебросить электроны примесного уровня в зону проводимости; образующиеся при этом положительные заряды локализуются на неподвижных атомах мышьяка и в проводимости не участвуют.

Таким образом, в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов, носителями тока являются электроны; воз­никает электронная примесная проводимость (проводимость n -типа). Полупроводники с такой проводимостью называются электронными (или полупроводниками n -типа). Примеси, являющиеся источником электронов, называются донорами, а энергетические уровни этих примесей — донорными уровнями.

Предположим, что в решетку кремния введен примесный атом с тремя валентными электронами, например бор (рис. 320, а). Для образования связей с четырьмя ближай­шими соседями у атома бора не хватает одного электрона, одна из связей остается неукомплектованной и четвертый электрон может быть захвачен от соседнего атома основного вещества, где соответственно образуется дырка. Последовательное заполне­ние образующихся дырок электронами эквивалентно движению дырок в полупровод­нике, т. е. дырки не остаются локализованными, а перемещаются в решетке кремния как свободные положительные заряды. Избыточный же отрицательный заряд, воз­никающий вблизи атома примеси, связан с атомом примеси и по решетке перемещать­ся не может.

По зонной теории, введение трехвалентной примеси в решетку кремния приводит к возникновению в запрещенной зоне примесного энергетического уровня А, не занято­го электронами. В случае кремния с примесью бора этот уровень располагается выше верхнего края валентной зоны на расстоянии D EA =0,08 эВ (рис. 320, б). Близость этих уровней к валентной зоне приводит к тому, что уже при сравнительно низких тем­пературах электроны из валентной зоны переходят на примесные уровни и, связываясь с атомами бора, теряют способность перемещаться по решетке кремния, т. е. в прово­димости не участвуют. Носителями тока являются лишь дырки, возникающие в ва­лентной зоне.

Таким образом, в полупроводниках с примесью, валентность которой на единицу меньше валентности основных атомов, носителями тока являются дырки; возникает дырочная проводимость (проворность p -типа). Полупроводники с такой проводимостью называются дырочными (или полупроводниками p -типа). Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами, а энергети­ческие уровни этих примесей — акцепторными уровнями.

В отличие от собственной проводимости, осуществляющейся одновременно элект­ронами и дырками, примесная проводимость полупроводников обусловлена в основ­ном носителями одного знака: электронами—в случае донорной примеси, дырка­ми — в случае акцепторной. Эти носители тока называются основными. Кроме основ­ных носителей в полупроводнике имеются и неосновные носители: в полупроводниках n -типа — дырки, в полупроводниках p- типа электроны.

Наличие примесных уровней в полупроводниках существенно изменяет положение уровня Ферми ЕF. Расчеты показывают, что в случае полупроводников n -типа уровень Ферми ЕF0 при 0 К расположен посередине между дном зоны проводимости и донорным уровнем (рис. 321), С повышением температуры все большее число электронов переходит из донорных состояний в зону проводимости, но, помимо этого, возрастает и число тепловых флуктуаций, способных возбуждать электроны из валентной зоны и перебрасывать их через запрещенную зону энергий. Поэтому при высоких тем­пературах уровень Ферми имеет тенденцию смещаться вниз (сплошная кривая) к свое­му предельному положению в центре запрещенной зоны, характерному для собствен­ного полупроводника.

Уровень Ферми в полупроводниках р- типа при 0 К ЕF0 располагается посередине между потолком валентной зоны и акцепторным уровнем (рис. 322). Сплошная кривая опять-таки показывает его смещение с температурой. При температурах, при которых примесные атомы оказываются полностью истощенными и увеличение концентрации носителей происходит за счет возбуждения собственных носителей, уровень Ферми располагается посередине запрещенной зоны, как в собственном полупроводнике.

Проводимость примесного полупроводника, как и проводимость любого провод­ника, определяется концентрацией носителей и их подвижностью. С изменением тем­пературы подвижность носителей меняется по сравнительно слабому степенному зако­ну, а концентрация носителей — по очень сильному экспоненциальному закону, поэто­му проводимость примесных полупроводников от температуры определяется в основ­ном температурной зависимостью концентрации носителей тока в нем. На рис. 323 дан примерный график зависимости ln g от 1/ T для примесных полупроводников. Участок AB описывает примесную проводимость полупроводника. Рост примесной проводимо­сти полупроводника с повышением температуры обусловлен в основном ростом концентрации примесных носителей. Участок ВС соответствует области истощения примесей (это подтверждают и эксперименты), участок CD описывает собственную проводимость полупроводника.

§ 244. Фотопроводимость полупроводников

Фотопроводимость (см. § 202) полупроводниковувеличение электропроводности полу­проводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hn ³ D E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 324, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.

Если полупроводник содержит примеси, то фотопроводимость может возникать и при hn < D E: для полупроводников с донорной примесью фотон должен обладать энергией hn ³ D ЕD, а для полупроводников с акцепторной примесью — hn ³ D ЕA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n -типа (рис. 324, б) или из валентной зоны на акцепторные уровни в случае полупроводника p -типа (рис. 324, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников п -типа и чисто дырочной для полупроводников p -типа.

Таким образом, если

(244.1)

(D E п — в общем случае энергия активации примесных атомов), то в полупроводнике возбуждается фотопроводимость. Из (244.1) можноопределить красную границу фотопроводимости — максимальную длину волны, при которой еще фотопроводимость возбуждается:

Учитывая значения D E и D E п для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников — на инфрак­расную.

На рис. 325 представлена типичная зависимость фотопроводимости j и коэффициен­та поглощения { от длины волны l падающего на полупроводник света. Из рисунка следует, что при l>l 0 фотопроводимость действительно не возбуждается. Спад фото­проводимости в коротковолновой части полосы поглощения объясняется большой скоростью рекомбинации в условиях сильного поглощения в тонком поверхностном слое толщиной х»1 мкм (коэффициент поглощения»106 м–1).

Наряду с поглощением, приводящим к появлению фотопроводимости, может иметь место экситонный механизм поглощения. Экситоны представляют собой квази­частицы — электрически нейтральные связанные состояния электрона и дырки, образу­ющиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны элект­рически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

§ 245. Люминесценция твердых тел

В природе давно известно излучение, отличное по своему характеру от всех известных видов излучения (теплового излучения, отражения, рассеяния света и т. д.). Этим излучением является люминесцентное излучение, примерами которого может служить свечение тел при облучении их видимым, ультрафиолетовым и рентгеновским излуче­нием, g-излучением и т.д. Вещества, способные под действием различного рода возбуждений светиться, получили название люминофоров.

Люминесценция — неравновесное излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, большую периода световых колебаний. Первая часть этого определения приводит к выводу, что люминесценция не является тепловым излучением (см. § 197), поскольку любое тело при температуре выше 0 К излучает электромагнитные волны, а такое излучение является тепловым. Вторая часть показывает, что люминесценция не является таким видом свечения, как отражение и рассеяние света, тормозное излучение заряженных частиц и т. д. Период световых колебаний составляет примерно 10–15 с, поэтому длительность, по которой свечение можно отнести к люминесценции, больше—примерно 10–10 с. Признак длительности свечения дает возможность отличить люминесценцию от других нерав­новесных процессов. Так, по этому признаку удалось установить, что излучение Вавилова — Черенкова (см. § 189) нельзя отнести к люминесценции.

В зависимости от способов возбуждения различают: фотолюминесценцию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), электролюминесценцию (под дейст­вием электрического поля), радиолюминесценцию (при возбуждении ядерным излучени­ем, например g-излучением, нейтронами, протонами), хемилюминесценцию (при хи­мических превращениях), триболюминесценцию (при растирании и раскалывании неко­торых кристаллов, например сахара). По длительности свечения условно различают: флуоресценцию (t £10–8с)и фосфоресценцию — свечение, продолжающееся заметный промежуток времени после прекращения возбуждения.

Первое количественное исследование люминесценции проведено более ста лет назад Дж. Стоксом,* сформулировавшим в 1852 г. следующее правило: длина вол­ны люминесцентного излучения всегда больше длины волны света, возбудившего его (рис. 326). Согласно квантовой теории, правило Стокса означает, что энергия hn падающего фотона частично расходуется на какие-то неоптические процессы, т. е.

откуда n люм <n или l люм >l что и следует из сформулированного правила.

* Дж. Стокс (1819—1903) — английский физик и математик.

 

Основной энергетической характеристикой люминесценции является энергетический выход, введенный С. И. Вавиловым в 1924 г., — отношение энергии, излученной люминофором при полном высвечивании, к энергии, поглощенной им. Типичная для органических люминофоров (на примере раствора флуоресцина) зависимость энергетического выхода h от длины волны l возбуждающего света представлена на рис. 327. Из рисунка следует, что вначале h растет пропорционально l, а затем, достигая максимального значения, быстро спадает до нуля при дальнейшем уве­личении l (закон Вавилова). Величина энергетического выхода для различных лю­минофоров колеблется в довольно широких пределах, максимальное ее значение может достигать примерно 80%.

Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров. На примере кристаллофосфоров рассмотрим механизмы возникновения люминесценции с точки зрения зонной теории твердых тел. Между валентной зоной и зоной проводимости кристаллофосфора располагаются примесные уровни активато­ра (рис. 328). При поглощении атомом активатора фотона с энергией hn электрон с примесного уровня переводится в зону проводимости, свободно перемещается по кристаллу до тех пор, пока не встретится с ионом активатора и не рекомбинирует с ним, перейдя вновь на примесный уровень. Рекомбинация сопровождается излучени­ем кванта люминесцентного свечения. Время высвечивания люминофора определяется временем жизни возбужденного состояния атомов активатора, которое обычно не превышает миллиардных долей секунды. Поэтому свечение является кратковременным и исчезает почти вслед за прекращением облучения.

Для возникновения длительного свечения (фосфоресценции) кристаллофосфор должен содержать также центры захвата, или ловушки для электронов, представ­ляющие собой незаполненные локальные уровни (например, Л1 и Л2), лежащие вблизи дна зоны проводимости (рис. 329). Они могут быть образованы атомами примесей, атомами в междоузлиях и т. д. Под действием света атомы активатора возбуждаются, т. е. электроны с примесного уровня переходят в зону проводимости и становятся свободными. Однако они захватываются ловушками, в результате чего теряют свою подвижность, а следовательно, и способность рекомбинировать с ионом активатора. Освобождение электрона из ловушки требует затраты определенной энергии, которую электроны могут получить, например, от тепловых колебаний решетки. Освобожден­ный из ловушки электрон попадает в зону проводимости и движется по кристаллу до тех пор, пока или не будет снова захвачен ловушкой, или не рекомбинирует с ионом активатора. В последнем случае возникает квант люминесцентного излучения. Длите­льность этого процесса определяется временем пребывания электронов в ловушках.

Явление люминесценции получило широкое применение в практике, например люминесцентный анализ — метод определения состава вещества по характерному его свечению. Этот метод, являясь весьма чувствительным (примерно 10–10 г / см3), позво­ляет обнаруживать наличие ничтожных примесей и применяется при тончайших ис­следованиях в биологии, медицине, пищевой промышленностии т. д. Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин и других изделий (исследуемая поверхность покрывается для этого люминес­центным раствором, который после удаления остается в трещинах).

Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов (см. § 233) и сцинтилляторов (будут рассмотрены ниже), применяются в электронно-оптических преобразователях (см. § 169), для созда­ния аварийного и маскировочного освещения и для изготовления светящихся указа­телей различных приборов.

§ 246. Контакт двух металлов по зонной теории

Если два различных металла привести в соприкосновение, то между ними возникает разность потенциалов, называемая контактной разностью потенциалов. Итальянский физик А. Вольта (1745—1827) установил, что если металлы А1, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd привести в контакт в указанной последовательности, то каждый предыдущий при соприкосновении с одним из следующих зарядится положительно. Этот ряд называется рядом Вольта. Контактная разность потенциалов для различных металлов составляет от десятых до целых вольт.

Вольта экспериментально установил два закона:

1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.

2. Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, воз­никающей при непосредственном соединении крайних проводников.

Для объяснения возникновения контактной разности потенциалов воспользуемся представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода А 1 и А 2, т.е. с различными положениями уровня Ферми (верхнего заполненного электронами энергетического уровня). Если A 1 <A 2 (этот случай изоб­ражен на рис. 330, а), то уровень Ферми располагается в металле 1 выше, чем в метал­ле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно. Одновременно проис­ходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицатель­но, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающи­мися металлами не установится равновесие, которое, как доказывается в статистичес­кой физике, характеризуется совпадением уровней Ферми в обоих металлах (рис. 330, б).

Так как для соприкасающихся металлов уровни Ферми совпадают, а работы выхода А 1 и A 2 не изменяются (они являются константами металлов и не зависят от того, находятся металлы в контакте или нет), то потенциальная энергия эле­ктронов в точках, лежащих вне металлов в непосредственной близости к их по­верхности (точки А и В на рис. 330, б), будет различной. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна

(246.1)

Разность потенциалов (246.1), обусловленная различием работ выхода контактиру­ющих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.

Если уровни Ферми для двух контактирующих металлов не одинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенци­алов, которая, как следует из рисунка, равна

(246.2)

В квантовой теории доказывается, что причиной возникновения внутренней кон­тактной разности потенциалов является различие концентраций электронов в контак­тирующих металлах. D j '' зависит от температуры T контакта металлов (поскольку наблюдается зависимость ЕF от T), обусловливая термоэлектрические явления. Как правило, D j ''<<D j '.

Если, например, привести в соприкосновение три разнородных проводника, име­ющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она, как можно показать (предоставляем это сделать читателю), не зависит от природы проме­жуточных проводников (второй закон Вольта).

Внутренняя контактная разность потенциалов возникает в двойном электрическом слое, образующемся в приконтактной области и называемом контактным слоем. Толщина контактного слоя в металлах составляет примерно 10–10 м, т. е. соизмерима с междоузельными расстояниями в решетке металла. Число электронов, участвующих в диффузии через контактный спой, составляет примерно 2% от общего числа электро­нов, находящихся на поверхности металла. Столь незначительное изменение концент­рации электронов в контактном слое, с одной стороны, и малая по сравнению с длиной свободного пробега электрона его толщина — с другой, не могут привести к замет­ному изменению проводимости контактного слоя по сравнению с остальной частью металла. Следовательно, электрический ток через контакт двух металлов проходит так же легко, как и через сами металлы, т.е. контактный слой проводит электрический ток в обоих направлениях (1 ® 2 и 2 ® 1) одинаково и не дает эффекта выпрямления, который всегда связан с односторонней проводимостью.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 472; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.